Jump to content

Chiraphos

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by DePiep (talk | contribs) at 14:55, 1 November 2015 (Chembox: rm/replace deprecated params. Fix unknown parameters (via AWB script)). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Chiraphos
Names
Other names
* (2S,3S)-(–)-Bis(diphenylphosphino)butane
  • (2R,3R)-(+)-Bis(diphenylphosphino)butane (for the corresponding enantiomer)
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.152.152 Edit this at Wikidata
  • InChI=1S/C28H28P2/c1-23(29(25-15-7-3-8-16-25)26-17-9-4-10-18-26)24(2)30(27-19-11-5-12-20-27)28-21-13-6-14-22-28/h3-24H,1-2H3/t23-,24-/m0/s1 checkY
    Key: FWXAUDSWDBGCMN-ZEQRLZLVSA-N checkY
  • InChI=1/C28H28P2/c1-23(29(25-15-7-3-8-16-25)26-17-9-4-10-18-26)24(2)30(27-19-11-5-12-20-27)28-21-13-6-14-22-28/h3-24H,1-2H3/t23-,24-/m0/s1
    Key: FWXAUDSWDBGCMN-ZEQRLZLVBA
  • P(c1ccccc1)(c2ccccc2)[C@H]([C@@H](P(c3ccccc3)c4ccccc4)C)C
Properties
C28H28P2
Molar mass 426.47 g/mol
Appearance White powder
Melting point 104 to 109 °C (219 to 228 °F; 377 to 382 K)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
checkY verify (what is checkY☒N ?)

Chiraphos is a chiral diphosphine employed as a ligand in organometallic chemistry. This bidentate ligand chelates metals via the two phosphine groups. Its name is derived from its description — being both chiral and a phosphine. Chiraphos is available in two enantiomeric forms, S,S and R,R, each with C2 symmetry.

Preparation

Chiraphos is prepared from S,S or R,R-2,3-butanediol, which are derived from commercially available S,S or R,R-tartaric acid; the technique of using cheaply available enantiopure starting materials is known as chiral pool synthesis. The diol is tosylated and then the ditosylate is treated with lithium diphenylphosphide.[1] The ligand was an important demonstration of how the conformation of the chelate ring can affect asymmetric induction by a metal catalyst. Prior to this work, in most chiral phosphines, e.g., DIPAMP, phosphorus was the stereogenic center.

References

  1. ^ M. D. Fryzuk, B. Bosnich (1977). "Asymmetric synthesis. Production of optically active amino acids by catalytic hydrogenation". J. Am. Chem. Soc. 99 (19): 6262–6267. doi:10.1021/ja00461a014. PMID 893889.