Chirp mass

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search

In astrophysics the chirp mass of a compact binary system determines the leading-order orbital evolution of the system as a result of energy loss from emitting gravitational waves. Because the gravitational wave frequency is determined by orbital frequency, the chirp mass also determines the frequency evolution of the gravitational wave signal emitted during a binary's inspiral phase. In gravitational wave data analysis it is easier to measure the chirp mass than the two component masses alone.

Definition from component masses[edit]

A two-body system with component masses and has a chirp mass of


The chirp mass may also be expressed in terms of other common mass parameters:

where is the total mass of the system, is the reduced mass of the system, is the mass ratio, and is the symmetric mass ratio.

Orbital evolution[edit]

In general relativity, the phase evolution of a binary orbit can be computed using a post-Newtonian expansion, a perturbative expansion in powers of the orbital velocity . The first order gravitational wave frequency, , evolution is described by the differential equation


where and are the speed of light and Newton's gravitational constant, respectively.

If one is able to measure both the frequency and frequency derivative of a gravitational wave signal, the chirp mass can be determined.[4][5][note 1]






To disentangle the individual component masses in the system one must additionally measure higher order terms in the post-Newtonian expansion.[1]

See also[edit]


  1. ^ Rewrite equation (1) to obtain the frequency evolution of gravitational waves from a coalescing binary:[6]






    Integrating equation (2) with respect to time gives:[6]






    where C is the constant of integration. Furthermore, on identifying and , the chirp mass can be calculated from the slope of the line fitted through the data points (x, y).


  1. ^ a b c Cutler, Curt; Flanagan, Éanna E. (1994). "Gravitational waves from merging compact binaries: How accurately can one extract the binary's parameters from the inspiral waveform?". Physical Review D. 49 (6): 2658–2697. arXiv:gr-qc/9402014. Bibcode:1994PhRvD..49.2658C. doi:10.1103/PhysRevD.49.2658.
  2. ^ L. Blanchet; T. Damour; B. R. Iyer; C. M. Will; A. G. Wiseman (1995). "Gravitational-Radiation Damping of Compact Binary Systems to Second Post-Newtonian order". Phys. Rev. Lett. (Submitted manuscript). 74 (3515): 3515–3518. arXiv:gr-qc/9501027. Bibcode:1995PhRvL..74.3515B. doi:10.1103/PhysRevLett.74.3515. PMID 10058225.
  3. ^ L. Blanchet; B. R. Iyer; C. M. Will; A. G. Wiseman (1996). "Gravitational waveforms from inspiralling compact binaries to second-post-Newtonian order". Classical and Quantum Gravity. 13 (575): 575–584. arXiv:gr-qc/9602024. Bibcode:1996CQGra..13..575B. doi:10.1088/0264-9381/13/4/002.
  4. ^ Abbott, B. P.; et al. (LIGO Scientific Collaboration and Virgo Collaboration) (2016). "Properties of the Binary Black Hole Merger GW150914". Physical Review Letters. 116 (24): 241102. arXiv:1602.03840. Bibcode:2016PhRvL.116x1102A. doi:10.1103/PhysRevLett.116.241102. PMID 27367378.
  5. ^ Abbott, B. P.; et al. (LIGO Scientific Collaboration and Virgo Collaboration) (2018). "Properties of the binary neutron star merger GW170817". arXiv:1805.11579. Bibcode:2018arXiv180511579T.
  6. ^ a b Tiwari, Vaibhav; Klimenko, Sergei; Necula, Valentin; Mitselmakher, Guenakh (January 2016). "Reconstruction of chirp mass in searches for gravitational wave transients". Classical and Quantum Gravity. 33 (1): 01LT01. arXiv:1510.02426. Bibcode:2016CQGra..33aLT01T. doi:10.1088/0264-9381/33/1/01LT01.