Chlorine azide

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search
Chlorine azide
Chlorine azide.svg
Chlorine-azide-3D-spacefill.png
Names
Other names
Chlorine nitride; Nitrogen chloride
Identifiers
3D model (JSmol)
Properties
ClN3
Molar mass 77.4731 g/mol
Appearance Yellow orange liquid; colorless gas
Melting point −100 °C (−148 °F; 173 K)
Boiling point −15 °C (5 °F; 258 K)
Solubility Soluble[vague] in butane, pentane, benzene, methanol, ethanol, diethyl ether, acetone, chloroform, carbon tetrachloride, and carbon disulfide; slightly soluble in water
Explosive data
Shock sensitivity Very high
Friction sensitivity Very high
Hazards
Main hazards Extremely sensitive explosive
NFPA 704
Flammability code 0: Will not burn. E.g., waterHealth (blue): no hazard codeReactivity code 4: Readily capable of detonation or explosive decomposition at normal temperatures and pressures. E.g., nitroglycerinSpecial hazards (white): no codeNFPA 704 four-colored diamond
0
4
Related compounds
Related compounds
Fluorine azide Bromine azide Hydrazoic acid
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☑Y verify (what is ☑Y☒N ?)
Infobox references

Chlorine azide (ClN3) is an inorganic compound that was discovered in 1908 by Friedrich Raschig.[1] Concentrated ClN
3
is notoriously unstable and may spontaneously detonate at any temperature.[2]

Preparation and handling[edit]

Chlorine azide is prepared by passing chlorine gas over silver azide, or by an addition of acetic acid to a solution of sodium hypochlorite and sodium azide.[3]

When treated with ammonia it is conceivable that one or more of the three possible azinamines, NH2N3, NH(N3)2, and N(N3)3 may be formed.[citation needed]

Explosive characteristics[edit]

Chlorine azide is extremely sensitive. It may explode, sometimes even without apparent provocation; it is thus too sensitive to be used commercially unless first diluted in solution. Chlorine azide reacts explosively with 1,3-butadiene, ethane, ethene, methane, propane, phosphorus, silver azide, and sodium. On contact with acid, chlorine azide decomposes, evolving toxic and corrosive hydrogen chloride gas.[4]

Regulatory information[edit]

Its shipment is subject to strict reporting requirements and regulations by the US Department of Transportation.

References[edit]

  1. ^ Frierson, W. J.; Browne, A. W. (1943). "Chlorine Azide. II. Interaction of Chlorine Azide and Silver Azide. Azino Silver Chloride, N3AgCl". Journal of the American Chemical Society. 65 (9): 1698–1700. doi:10.1021/ja01249a013.
  2. ^ Frierson, W. J.; Kronrad, J.; Browne, A. W. (1943). "Chlorine Azide, ClN3. I.". Journal of the American Chemical Society. 65 (9): 1696–1698. doi:10.1021/ja01249a012.
  3. ^ Raschig, F. (1908). "Über Chlorazid N3Cl". Berichte der Deutschen Chemischen Gesellschaft. 41 (3): 4194–4195. doi:10.1002/cber.190804103130.
  4. ^ CID 61708 from PubChem