ISO/IEC 11801

From Wikipedia, the free encyclopedia
  (Redirected from Class F cable)
Jump to: navigation, search

International standard ISO/IEC 11801 Information technology — Generic cabling for customer premises specifies general-purpose telecommunication cabling systems (structured cabling) that are suitable for a wide range of applications (analog and ISDN telephony, various data communication standards, building control systems, factory automation). It covers both balanced copper cabling and optical fibre cabling.

The standard was designed for use within commercial premises that may consist of either a single building or of multiple buildings on a campus. It was optimized for premises that span up to 3 km, up to 1 km2 office space, with between 50 and 50,000 persons, but can also be applied for installations outside this range.

A major revision, Edition 3, is being prepared which will unify requirements for commercial, home and industrial networks.

Classes and categories[edit]

The standard defines several link/channel classes and cabling categories of twisted-pair copper interconnects, which differ in the maximum frequency for which a certain channel performance is required:

  • Class A: link/channel up to 100 kHz using Category 1 cable/connectors
  • Class B: link/channel up to 1 MHz using Category 2 cable/connectors
  • Class C: link/channel up to 16 MHz using Category 3 cable/connectors
  • Class D: link/channel up to 100 MHz using Category 5e cable/connectors
  • Class E: link/channel up to 250 MHz using Category 6 cable/connectors
  • Class EA: link/channel up to 500 MHz using Category 6A cable/connectors (Amendment 1 and 2 to ISO/IEC 11801, 2nd Ed.)
  • Class F: link/channel up to 600 MHz using Category 7 cable/connectors
  • Class FA: link/channel up to 1000 MHz using Category 7A cable/connectors (Amendment 1 and 2 to ISO/IEC 11801, 2nd Ed.)
  • Class I: link/channel up to between 1600 and 2000 MHz using Category 8.1 cable/connectors (specification under development)
  • Class II: link/channel up to between 1600 and 2000 MHz using Category 8.2 cable/connectors (specification under development)

The standard link impedance is 100 Ω (The older 1995 version of the standard also permitted 120 Ω and 150 Ω in Classes A−C, but this was removed from the 2002 edition).

The standard defines several classes of optical fiber interconnect:

  • OM1: Multimode fiber type 62.5 µm core; minimum modal bandwidth of 200 MHz·km at 850 nm
  • OM2: Multimode fiber type 50 µm core; minimum modal bandwidth of 500 MHz·km at 850 nm
  • OM3: Multimode fiber type 50 µm core; minimum modal bandwidth of 2000 MHz·km at 850 nm
  • OM4: Multimode fiber type 50 µm core; minimum modal bandwidth of 4700 MHz·km at 850 nm
  • OS1: Single-mode fiber type 1 dB/km attenuation
  • OS2: Single-mode fiber type 0.4 dB/km attenuation

Category 7[edit]

Category 7 S/FTP cable

Class F channel and Category 7 cable are backward compatible with Class D/Category 5e and Class E/Category 6. Class F features even stricter specifications for crosstalk and system noise than Class E. To achieve this, shielding has been added for individual wire pairs and the cable as a whole. Unshielded cables rely on the quality of the twists to protect from EMI. This involves a tight twist and carefully controlled design. Cables with individual shielding per pair such as category 7 rely mostly on the shield and therefore have pairs with longer twists.

The Category 7 cable standard has been ratified in 2002 to allow 10 Gigabit Ethernet over 100 m of copper cabling. The cable contains four twisted copper wire pairs, just like the earlier standards. Category 7 cable can be terminated either with 8P8C compatible GG45 electrical connectors which incorporate the 8P8C standard or with TERA connectors. When combined with GG-45 or TERA connectors, Category 7 cable is rated for transmission frequencies of up to 600 MHz.[1]

However, in 2008 Category 6A was ratified and allows 10 Gbit/s Ethernet while still using the traditional 8P8C connector. Therefore, all manufacturers of active equipment and network cards have chosen to support the 8P8C for their 10 Gigabit Ethernet products on [2] copper and not the GG45, ARJ45, or TERA. These products therefore require a Class EA channel (Cat 6A). As of 2017 there is no equipment that has connectors supporting the Class F (Category 7) channel.

Category 7 is not recognized by the TIA/EIA.

Category 7A[edit]

Class FA (Class F Augmented) channels and Category 7A cables, introduced by ISO 11801 Edition 2 Amendment 2 (2010), are defined at frequencies up to 1000 MHz, suitable for multiple applications including CATV (862 MHz).[citation needed]

The intent of the Class FA was to possibly support the future 40Gigabit Ethernet: 40Gbase-T. Simulation results have shown that 40 Gigabit Ethernet may be possible at 50 meters and 100 Gigabit Ethernet at 15 meters.[citation needed] In 2007, researchers at Pennsylvania State University predicted that either 32 nm or 22 nm circuits would allow for 100 Gigabit Ethernet at 100 meters.[3][4]

However, in 2016, the IEEE 802.3bq working group ratified the amendment 3 which defines 25Gbase-T and 40gbase-T on Category 8 cabling specified to 2000 MHz. The Class FA therefore does not support 40G Ethernet.

As of 2017 there is no equipment that has connectors supporting the Class F (Category 7) channel.

Category 7A is not recognized in TIA/EIA-568.

Category 8[edit]

Category 8 was ratified by the TR43 working group under ANSI/TIA 568-C.2-1. It is defined up 2000 MHz and only for distances from 30 to 36m depending on the patch cords used. ISO is expected to ratify the equivalent in 2017 or 2018 but will have 2 options:

  • Class I channel (Category 8.1 cable): minimum cable design U/FTP or F/UTP, fully backward compatible and interoperable with Class EA (Category 6A) using 8P8C connectors
  • Class II channel (Category 8.2 cable): F/FTP or S/FTP minimum, interoperable with Class FA (Category 7A) using TERA or GG45 connectors.

Category 8 is designed only for data centers where distances between switches and servers is short. It is not intended for general office cabling.

Acronyms for twisted pairs[edit]

Annex E, Acronyms for balanced cables, provides a system to specify the exact construction for both unshielded and shielded balanced twisted pair cables. It uses three letters - U for unshielded, S for braided shielding, and F for foil shielding - to form a two-part abbreviation in the form of xx/xTP, where the first part specifies the type of overall cable shielding, and the second part specifies shielding for individual cable elements.

Common cable types include U/UTP (unshielded cable); U/FTP (individual pair shielding without the overall screen); F/UTP, S/UTP, or SF/UTP (overall screen without individual shielding); and F/FTP, S/FTP, or SF/FTP (overall screen with individual foil shielding).

Edition 3[edit]

Edition 3, currently being prepared by ISO/IEC JTC 1/SC 25 "Interconnection of information technology equipment", is a major revision of the standard which will unify several prior standards for commercial, home, and industrial networks, as well as data centers, and define requirements for generic cabling and distributed building networks.

The new series of standards will include six parts:[5][6]

ISO/IEC Standard Title Replaces Description
ISO/IEC 11801-1 Part 1: General requirements ISO/IEC 11801 Generic cabling requirements for twisted-pair and optical fiber cables
ISO/IEC 11801-2 Part 2: Office premises ISO/IEC 11801 Cabling for commercial (enterprise) buildings
ISO/IEC 11801-3 Part 3: Industrial premises ISO/IEC 24702 Cabling for industrial buildings, with applications including automation, process control, and monitoring
ISO/IEC 11801-4 Part 4: Homes ISO/IEC 15018 Cabling for residential buildings, including 1200 MHz links for CATV/SATV applications
ISO/IEC 11801-5 Part 5: Data centers ISO/IEC 24764 Cabling for high-performance networks used by data centers
ISO/IEC 11801-6 Part 6: Distributed building services ISO/IEC TR 24704 Cabling for distributed wireless networks for building automation and IOT devices

Versions[edit]

  • ISO/IEC 11801:1995 (Ed. 1) - first edition
  • ISO/IEC 11801:2000 (Ed. 1.1) - Edition 1, Amendment 1
  • ISO/IEC 11801:2002 (Ed. 2) - second edition
  • ISO/IEC 11801:2008 (Ed. 2.1) - Edition 2, Amendment 1
  • ISO/IEC 11801:2010 (Ed. 2.2) - Edition 2, Amendment 2
  • ISO/IEC 11801 Ed.3 (in development)

See also[edit]

References[edit]

  1. ^ Nielsen, Allan (2008), AMP NETCONNECT Guide to ISO/IEC 11801 2nd Edition Including Amendment 1 (PDF), Schaffhausen, Switzerland: Tyco Electronics, p. 11, Archived from the original on February 3, 2014, retrieved March 11, 2012 
  2. ^ Hansen, Carl G. (November 2010). "10GABSE-T for Broad 10_Gigabit Adoption in the Data Center". Ethernet Alliance November 2010. 
  3. ^ "Researchers push transmission rate of copper cables". News release. Pennsylvania State University. November 14, 2007. Retrieved July 9, 2011. 
  4. ^ Rick C. Hodgin (November 14, 2007). "UPDATE: Cat 7 copper theorized to transmit 100 Gbit/s in excess of 100 meters (328 ft) using future modems". TGDaily blog. Retrieved July 9, 2011. 
  5. ^ Flatman, Alan (2013-05-16). "ISO/IEC TR 11801-99-1: Guidance on 40GBASE-T Cabling -a tutorial-" (PDF). Retrieved 2014-01-26. 
  6. ^ "Standards - ISO/IEC JTC 1/SC 25 - Interconnection of information technology equipment". ISO.org. Retrieved 2016-10-02. 

Further reading[edit]

  • International standard ISO/IEC 11801: Information technology — Generic cabling for customer premises.
  • European standard EN 50173: Information technology — Generic cabling systems. 1995.