Clausius–Mossotti relation

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search

The Clausius–Mossotti relation expresses the dielectric constant (relative permittivity, εr) of a material in terms of the atomic polarizability, α, of the material's constituent atoms and/or molecules, or a homogeneous mixture thereof. It is named after Ottaviano-Fabrizio Mossotti and Rudolf Clausius. It is equivalent to the Lorentz–Lorenz equation. It may be expressed as:[1][2]


  • is the dielectric constant of the material, which for non-magnetic materials is equal to where is the refractive index
  • is the permittivity of free space
  • is the number density of the molecules (number per cubic meter), and
  • is the molecular polarizability in SI-units (C·m2/V).

In the case that the material consists of a mixture of two or more species, the right hand side of the above equation would consist of the sum of the molecular polarizability contribution from each species, indexed by i in the following form:[3]

In the CGS system of units the Clausius–Mossotti relation is typically rewritten to show the molecular polarizability volume which has units of volume (m3).[2] Confusion may arise from the practice of using the shorter name "molecular polarizability" for both and within literature intended for the respective unit system.

The Clausius-Mossotti relation assumes only an induced dipole relevant to its polarizability and is thus inapplicable for substances with a significant permanent dipole. It is applicable to gases such as N2, CO2, CH4 and H2 at sufficiently low densities and pressures.[4] For example, the Clausius-Mossotti relation is accurate for N2 gas up to 1000 atm between 25°C and 125°C.[5] Moreover, the Clausius-Mossotti relation may be applicable to substances if the applied electric field is at a sufficiently high frequencies such that any permanent dipole modes are inactive.[6]

Lorentz–Lorenz equation[edit]

The Lorentz–Lorenz equation is similar to the Clausius–Mossotti relation, except that it relates the refractive index (rather than the dielectric constant) of a substance to its polarizability. The Lorentz–Lorenz equation is named after the Danish mathematician and scientist Ludvig Lorenz, who published it in 1869, and the Dutch physicist Hendrik Lorentz, who discovered it independently in 1878.

The most general form of the Lorentz–Lorenz equation is (in CGS units)

where is the refractive index, is the number of molecules per unit volume, and is the mean polarizability. This equation is approximately valid for homogeneous solids as well as liquids and gases.

When the square of the refractive index is , as it is for many gases, the equation reduces to:

or simply

This applies to gases at ordinary pressures. The refractive index of the gas can then be expressed in terms of the molar refractivity as:

where is the pressure of the gas, is the universal gas constant, and is the (absolute) temperature, which together determine the number density .


  1. ^ Rysselberghe, P. V. (January 1932). "Remarks concerning the Clausius–Mossotti Law". J. Phys. Chem. 36 (4): 1152–1155. doi:10.1021/j150334a007.
  2. ^ a b Atkins, Peter; de Paula, Julio (2010). "Chapter 17". Atkins' Physical Chemistry. Oxford University Press. pp. 622–629. ISBN 978-0-19-954337-3.
  3. ^ Corson, Dale R; Lorrain, Paul (1962). Introduction to electromagnetic fields and waves. San Francisco: W.H. Freeman. p. 116. OCLC 398313.
  4. ^ Uhlig, H. H.; Keyes, F. G. (1933-02-01). "The Dependence of the Dielectric Constants of Gases on Temperature and Density". The Journal of Chemical Physics. 1 (2): 155–159. doi:10.1063/1.3247827. ISSN 0021-9606.
  5. ^ Michels, A.; Jaspers, A.; Sanders, P. (1934-05-01). "Dielectric constant of nitrogen up to 1000 atms. Between 25° C and 150° C". Physica. 1 (7): 627–633. doi:10.1016/S0031-8914(34)80250-9. ISSN 0031-8914.
  6. ^ Böttcher, C.J.F. (1973). Theory of Electric Polarization. Elsevier. doi:10.1016/c2009-0-15579-4. ISBN 978-0-444-41019-1.