Cobalt(II) hydroxide

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search
Cobalt(II) hydroxide
Red cobalt hydroxide.JPG
cobalt(II) hydroxide
Names
IUPAC name
Cobalt(II) hydroxide
Other names
Cobaltous hydroxide, cobalt hydroxide, β-cobalt(II) hydroxide
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.040.136
Properties
Co(OH)2
Molar mass 92.948 g/mol
Appearance rose-red powder or bluish-green powder
Density 3.597 g/cm3
Melting point 168 °C (334 °F; 441 K) (decomposes)[1]
3.20 mg/L
1.0×1015
Solubility soluble in acids, ammonia; insoluble in dilute alkalis
Structure
rhombohedral
Thermochemistry
79.0 J·mol−1·K−1[1]
-539.7 kJ·mol−1
Hazards
Safety data sheet Oxford University
Harmful Xn
R-phrases (outdated) R20 R21 R22 R36 R37 R38 R43
S-phrases (outdated) S24 S26 S36 S37 S39[2]
NFPA 704
Flammability code 0: Will not burn. E.g. waterHealth code 1: Exposure would cause irritation but only minor residual injury. E.g. turpentineReactivity code 2: Undergoes violent chemical change at elevated temperatures and pressures, reacts violently with water, or may form explosive mixtures with water. E.g. white phosphorusSpecial hazards (white): no codeNFPA 704 four-colored diamond
0
1
2
Related compounds
Other anions
Cobalt(II) chloride
Cobalt(II) bromide
Cobalt(II) iodide
Other cations
Iron(II) hydroxide
Nickel(II) hydroxide
Copper(II) hydroxide
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☑Y verify (what is ☑Y☒N ?)
Infobox references

Cobalt(II) hydroxide or cobaltous hydroxide is the inorganic compound with the formula Co(OH)
2
, consisting of divalent cobalt cations Co2+
and hydroxide anions HO
. The pure compound, often called the "beta form" (β-Co(OH)
2
) is a pink solid insoluble in water.[3][4]

The name is also applied to a related compound, often called "alpha" or "blue" form (α-Co(OH)
2
), which incorporates other anions in its molecular structure. This compound is blue and rather unstable.[3][4]

Cobalt(II) hydroxide is most used as a drying agent for paints, varnishes, and inks, in the preparation of other cobalt compounds, as a catalyst and in the manufacture of battery electrodes.

Preparation[edit]

Cobalt(II) hydroxide precipitates as a solid when an alkali metal hydroxide is added to an aqueous solution of Co2+ salt.[5] For example,

Co2+ + 2 NaOH → Co(OH)2 + 2 Na+

The compound can be prepared by reacting cobalt(II) nitrate in water with a solution of triethylamine N(C
2
H
5
)
3
as both the base and a complexing agent.[4]. It can also be prepared by elecrolysis of a solution of cobalt nitrate with a platinum cathode.[6]

Reactions[edit]

Cobalt(II) hydroxide decomposes to cobalt(II) oxide at 168 °C under vacuum and is oxidized by air.[5] The thermal decomposition product in air above 300 °C is Co3O4.[7][8]

Like iron(II) hydroxide, cobalt(II) hydroxide is a basic hydroxide, and reacts with acids to form cobalt(II) salts. It also reacts with strong bases to form solutions with dark blue cobaltate(II) anions, [Co(OH)4]2− and [Co(OH)6]4−.[9]

Structure[edit]

The pure (β) form of cobalt(II) hydroxide has the brucite crystal structure. As such, the anion and cation packing are like those in cadmium iodide, in which the cobalt(II) cations have octahedral molecular geometry.[9]

The beta form can be obtained as platelets with partial hexagonal geometry, 100-300 nm wide and 5-10 nm thick.[6][4]

Alpha form[edit]

The so-called "alpha form" (α-Co(OH)2) is not a polymorph of the pure (β) form, but rather a more complex compound in which hydroxide-cobalt-hydroxide layers have a residual positive charge and alternate with layers of other anions such as nitrate, carbonate, chloride, etc. (the hydrotalcite structure).[4] It is usually obtained as a blue precipitate when a base like sodium hydroxide is added to a solution of a cobalt(II) salt. The precipitate slowly converts to the beta form.[10]

Nanotubes[edit]

Cobalt hydroxide can be obtained in the form of nanotubes, which may be of interest in nanotechnology and materials science. [11]

Cobalt hydroxide nanotubes. Scale bars: (a,b) 500 nm, inset 200  nm; (c,e) 50 nm; (d) 100  nm.

References[edit]

  1. ^ a b Lide, David R. (1998). Handbook of Chemistry and Physics (87 ed.). Boca Raton, Florida: CRC Press. p. 513. ISBN 0-8493-0594-2.
  2. ^ "Safety (MSDS) data for cobalt (II) hydroxide". Oxford University. Retrieved 2009-03-27.
  3. ^ a b Lide, David R. (1998). Handbook of Chemistry and Physics (87 ed.). Boca Raton, Florida: CRC Press. p. 454. ISBN 0-8493-0594-2.
  4. ^ a b c d e Xiaohe Liu, Ran Yi, Ning Zhang, Rongrong Shi, Xingguo Li, and Guanzhou Qiu (2008): "Cobalt hydroxide nanosheets and their thermal decomposition to cobalt oxide nanorings". Chemistry, an Asian Journal, volume 3, issue 4, pages 732-738. doi:10.1002/asia.200700264
  5. ^ a b O. Glemser "Cobalt(II) Hydroxide" in Handbook of Preparative Inorganic Chemistry, 2nd Ed. Edited by G. Brauer, Academic Press, 1963, NY. Vol. 1. p. 1521.
  6. ^ a b P. Benson, G. W. D. Briggs, and W. F. K. Wynne-Jones (1964): "The cobalt hydroxide electrode—I. Structure and phase transitions of the hydroxides". Electrochimica Acta, volume 9, issue 3, pages 275-280. doi:10.1016/0013-4686(64)80016-5
  7. ^ Jayashree, R. S.; Kamath, P. Vishnu (1999). "Electrochemical synthesis of a-cobalt hydroxide". Journal of Materials Chemistry. 9 (4): 961–963. doi:10.1039/A807000H.
  8. ^ Xu, Z. P.; Zeng, H. C. (1998). "Thermal evolution of cobalt hydroxides: a comparative study of their various structural phases". Journal of Materials Chemistry. 8 (11): 2499–2506. doi:10.1039/A804767G.
  9. ^ a b Wiberg, Nils; Wiberg, Egon; Holleman, A. F. (2001). Inorganic Chemistry. Academic Press. pp. 1478–1479. ISBN 0-12-352651-5. Retrieved 2009-03-27.
  10. ^ Liu, Zhaoping; Ma, Renzhi; Osada, Minoru; Takada, Kazunori; Sasaki, Takayoshi (2005). "Selective and Controlled Synthesis of α- and β-Cobalt Hydroxides in Highly Developed Hexagonal Platelets". Journal of the American Chemical Society. 127: 13869–13874. doi:10.1021/ja0523338.CS1 maint: uses authors parameter (link)
  11. ^ Ni, Bing; Liu, Huiling; Wang, Peng-Peng; He, Jie; Wang, Xun (2015). "General synthesis of inorganic single-walled nanotubes". Nature Communications. 6: 8756. doi:10.1038/ncomms9756. PMC 4640082. PMID 26510862.