Color gradient

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search

A linear, or axial, color gradient

In computer graphics, a color gradient specifies a range of position-dependent colors, usually used to fill a region.[1] For example, many window managers allow the screen background to be specified as a gradient. The colors produced by a gradient vary continuously with position, producing smooth color transitions.

A color gradient is also known as a color ramp or a color progression. In assigning colors to a set of values, a gradient is a continuous colormap, a type of color scheme.

Definitions[edit]

  • Color gradient is a set of colors arranged in a linear order ( ordered)
  • A continuous colormap is a curve through a colorspace

Strict definition[edit]

A colormap[4] is a function which associate a real value r with point c in color space

which is defined by:

  • a colorspace C
  • an increasing sequence of sampling points
  • a series of values in the colorspace
  • the mapping
  • a rule for interpolating the intermediate values

where:

  • r is a real number
  • is a set of real numbers
  • c is a color = point in colorspace C

Types[edit]

Criteria for classification:

  • dimension
  • discrete ( clasessed [5]) / continous
  • shape
  • perceptual uniformity[6]
  • order
    • ordered (sequential) and non-ordered (categorical)
    • perceptual order
  • readability for colour-vision deficient or colour-blind people ( colorblind-friendly)


dimension[edit]

Shapes[edit]

Axial gradients[edit]

An axial color gradient, with a white line segment connecting the two points

An axial color gradient (sometimes also called a linear color gradient) is specified by two points, and a color at each point. The colors along the line through those points are calculated using linear interpolation, then extended perpendicular to that line. In digital imaging systems, colors are typically interpolated in an RGB color space, often using gamma compressed RGB color values, as opposed to linear. CSS and SVG both support linear gradients.[8][9]

Radial gradients[edit]

A radial color gradient

A radial gradient is specified as a circle that has one color at the edge and another at the center. Colors are calculated by linear interpolation based on distance from the center. This can be used to approximate the diffuse reflection of light from a point source by a sphere.[citation needed] Both CSS and SVG support radial gradients.[10][11]

Conic gradients[edit]

conic gradient

Conic or conical gradients are gradients with color transitions rotated around a center point (rather than radiating from the center). Example conic gradients include pie charts and color wheels.[12]

Other shapes[edit]

In vector graphics polygon meshes can be used, e.g., Adobe Illustrator supported gradient meshes.

Effect of color space[edit]

The appearance of a gradient not only varies by the color themselves, but also by the color space the calculation is performed in. The problem usually becomes important for two reasons:

  • Gamma correction to a color space. With a typical γ of around 2, it is easy to see that a gamma-enabled color space will blend darker than a linear-intensity color space, since the sum of squares of two numbers is never more than the square of their sum. The effect is most apparent in blending complementary colors like red and green, with the middle color being a dark color instead of the expected yellow.[13][14] The radial and conic examples on this page clearly exhibit this error.
  • Handling of other perceptual properties. In information visualization, it is undesirable to have a supposedly "flat" gradient show non-monotonic variations in lightness and saturation along the way. This is because human vision emphasizes these qualities, causing bias or confusion in interpretation.[15]

Examples[edit]

HSV rainbow[edit]

Tools[edit]

  • The CCC-Tool[16] is a general tool for the creation, analyzing and testing of colormaps with the effort to minimize the needed interaction components.[17]
  • ColorMeasures an online tool to enable you to mathematically analyze the properties of a colormap in multiple color spaces
  • Color Brewer - Web tool for guidance in choosing choropleth map color schemes, based on the research of Dr. Cynthia Brewer
  • gencolormap - tools generating color maps for visualization
  • Chroma.js Color Palette Helper for mastering multi-hued, multi-stops color scales

See also[edit]

References[edit]

  1. ^ Eisenberg, J. David (2002). SVG Essentials. O'Reilly Media. p. 107. ISBN 0-596-00223-8.
  2. ^ Dave Green's `cubehelix' colour scheme
  3. ^ Diverging Color Maps for Scientific Visualization - Kenneth Moreland
  4. ^ The Good, the Bad, and the Ugly: A Theoretical Framework for the Assessment of Continuous Colormaps by Roxana Bujack, Terece L. Turton, Francesca Samsel, Colin Ware
  5. ^ which-color-scale-to-use-in-data-vis by Lisa Charlotte Rost
  6. ^ Fabio Crameri: Scientific colour maps
  7. ^ A survey and task-based quality assessment of static 2D colormaps Author(s): Bernard, Jürgen; Steiger, Martin; Mittelstädt, Sebastian; Thum, Simon; Keim, Daniel; Kohlhammer, Jörn, In Kao, David L. (Ed.) ; Society for Imaging Science and Technology -IS&T-; Society of Photo-Optical Instrumentation Engineers -SPIE-, Bellingham/Wash.: Visualization and Data Analysis 2015 : 9-11 February 2015, San Francisco, California Bellingham, WA: SPIE, 2015 (Proceedings of SPIE 9397) ISBN 9781628414875
  8. ^ Linear Gradients in "CSS Image Values and Replaced Content Module Level 3", W3C Candidate Recommendation, April 2012
  9. ^ Linear Gradients in "SVG 1.1 (Second Edition)", W3C Recommendation, August 2011
  10. ^ Radial Gradients in "CSS Image Values and Replaced Content Module Level 3", W3C Candidate Recommendation, April 2012
  11. ^ Radial Gradients in "SVG 1.1 (Second Edition)", W3C Recommendation, August 2011
  12. ^ mozilla docs: CSS conic-gradient
  13. ^ Minute Physics (March 20, 2015). "Computer Color is Broken". YouTube.
  14. ^ Novak, John (September 21, 2016). "What every coder should know about gamma".
  15. ^ Zeileis, Achim; Fisher, Jason C.; Hornik, Kurt; Ihaka, Ross; McWhite, Claire D.; Murrell, Paul; Stauffer, Reto; Wilke, Claus O. (2019). "Colorspace: A Toolbox for Manipulating and Assessing Colors and Palettes". arXiv:1903.06490 [stat.CO].
  16. ^ CCC-Tool
  17. ^ Nardini, Pascal; Chen, Min; Samsel, Francesca; Bujack, Roxana; Bottinger, Michael; Scheuermann, Gerik (2019). "The Making of Continuous Colormaps". IEEE Transactions on Visualization and Computer Graphics: 1. doi:10.1109/TVCG.2019.2961674. PMID 31870986.