Comparison of commercial battery types

From Wikipedia, the free encyclopedia
  (Redirected from Comparison of battery types)
Jump to: navigation, search

Common characteristics[edit]

Cell chemistry Also known as Electrode Re­charge­able Com­mercial­ized Voltage Energy density Specific power Cost Discharge efficiency Self-discharge rate Shelf life
Anode Cathode Cutoff Nominal 100% SOC by mass by volume
year V V V MJ/kg
(Wh/kg)
MJ/L
(Wh/L)
W/kg Wh/$
($/kWh)
% %/month years
Lead-acid SLA
VRLA
Lead Lead dioxide Yes 1881[1] 1.75[2] 2.1[2] 2.23–2.32[2] 0.11–0.14
(30–40)[2]
0.22–0.27
(60–75)[2]
180[2] 6.92–17.79
(56–145)
[2]
50–92[2] 3–20[2]
Zinc-carbon Carbon-zinc Zinc Carbon No 1898[3] 0.75–0.9[3] 1.5[3] 0.13
(36)[3]
0.33
(92)[3]
10–27[3] 3.16
(316)
[3]
50–60[3] 0.32[3] 3–5[4]
Zinc-air PR Oxygen No 1932[5] 0.9[5] 1.45–1.65[5] 1.59
(442)[5]
6.02
(1,673)[5]
100[5] 2.77
(361)
[5]
60–70[5] 0.17[5] 3[5]
Mercury oxide-zinc Mercuric oxide
Mercury cell
Mercuric oxide No 1942–[6] 1996[7] 0.9[8] 1.35[8] 0.36–0.44
(99–123)[8]
1.1–1.8
(300–500)[8]
2[6]
Alkaline Zn/MnO
2

LR
Manganese (IV) oxide No 1949[9] 0.9[10] 1.5[11] 1.6[10] 0.31–0.68
(85–190)[12]
0.90–1.56
(250–434)[12]
50[12] 0.49
(2023)
[12]
45–85[12] 0.17[12] 5–10[4]
Rechargeable alkaline RAM Yes 1992[13] 0.9[14] 1.57[14] 1.6[14] 1 ! <1[13]
Silver-oxide SR Silver oxide No 1960[15] 1.2[16] 1.55[16] 1.6[17] 0.47
(130)[17]
1.8
(500)[17]
Nickel-zinc NiZn Nickel oxide hydroxide Yes 2009[13] 0.9[13] 1.65[13] 1.85[13] 13[13]
Nickel-iron NiFe Iron Yes 1901[18] 4.5[19] 6[19] 7.2[19] 0.07–0.09
(19–25)[20]
0.45
(125)[21]
100 4.21–5.61
(178–238)
[1]
20–30 30–[22] 50[23][24]
Nickel-cadmium NiCd
NiCad
Cadmium Yes 1960 !c. 1960[25] 0.9–1.05[26] 1.2[27] 1.3[26] 0.11
(30)[27]
0.36
(100)[27]
150–200[28] 10[13]
Nickel-hydrogen NiH
2

Ni-H
2
Hydrogen Yes 1975[29] 1.0[30] 1.55[28] 0.16–0.23
(45–65)[28]
0.22
(60)[31]
150–200[28] 5[31]
Nickel-metal hydride NiMH
Ni-MH
Metal hydride Yes 1990[1] 0.9–1.05[26] 1.2[11] 1.3[26] 0.36
(100)[11]
1.44
(401)[32]
250–1000 3.37
(297)
[1]
30[33]
Low self-discharge nickel-metal hydride LSD NiMH Yes 2005[34] 0.9–1.05[26] 1.2 1.3[26] 0.34
(95)[35]
1.27
(353)[36]
250–1000 0.42[33]
Lithium-manganese dioxide Lithium
Li-MnO
2

CR
Li-Mn
Lithium Manganese dioxide No 1976[37] 2[38] 3[11] 0.54–1.19
(150–330)[39]
1.1–2.6
(300–710)[39]
250–400[39] 1 5-10[39]
Lithium-carbon monofluoride Li-(CF)
x

BR
Carbon monofluoride No 1976[37] 2[40] 3[40] 0.94–2.81
(260–780)[39]
1.58–5.32
(440–1,478)[39]
50–80[39] 0.2–0.3[41] 15[39]
Lithium-iron disulfide Li-FeS
2

FR
Iron disulfide No 1989[42] 0.9[42] 1.5[42] 1.8[42] 1.07
(297)[42]
2.1
(580)[43]
0.05[42] 10–20[42]
Lithium cobalt oxide LiCoO
2

ICR
LCO
Li‑cobalt[44]
Graphite Lithium cobalt oxide Yes 1991[45] 2.5[46] 3.7[47] 4.2[46] 0.70
(195)[47]
2.0
(560)[47]
2.81
(356)
[1]
Lithium iron phosphate LiFePO
4

IFR
LFP
Li‑phosphate[44]
Lithium iron phosphate Yes 1996[48] 2[46] 3.2[47] 3.65[46] 0.32–0.47
(90–130)[47]
1.20
(333)[47]
200 [49] 4.5
Lithium manganese oxide LiMn
2
O
4

IMR
LMO
Li‑manganese[44]
Lithium manganese oxide Yes 1999[1] 2.5[50] 3.9[47] 4.2[50] 0.54
(150)[47]
1.5
(420)[47]
2.81
(356)
[1]
Lithium nickel cobalt aluminum oxide LiNiCoAlO
2

NCA
Li‑aluminum[44]
Lithium nickel cobalt aluminum oxide Yes 1999 3.0[51] 3.6[47] 4.3[51] 0.79
(220)[47]
2.2
(600)[47]
Lithium nickel manganese cobalt oxide LiNiMnCoO
2

INR
NMC[44]
NCM[47]
Lithium nickel manganese cobalt oxide Yes 2008[52] 2.5[46] 3.6[47] 4.2[46] 0.74
(205)[47]
2.1
(580)[47]

^† Cost in USD, adjusted for inflation.

^‡ Typical. See Lithium-ion battery § Negative electrode for alternative electrode materials.

Rechargeable characteristics[edit]

Cell chemistry Charge efficiency Cycle durability
% # cycles
Lead-acid 50–92[2] 500 typical, 800 max[2]
Rechargeable alkaline 5-100[13]
Nickel-zinc 100 to 50% capacity[13]
Nickel-iron 65–80 5000
Nickel-cadmium 500[25]
Nickel-hydrogen 20,000[31]
Nickel-metal hydride 66 300–800[13]
Low self-discharge nickel-metal hydride battery 500-1500[13]
Lithium cobalt oxide 500–1000
Lithium iron phosphate 1000–2000
Lithium manganese oxide 300–700
Lithium nickel cobalt aluminum oxide 1000-1500[53]
Lithium nickel manganese cobalt oxide 5000[53]

Thermal runaway[edit]

Under certain conditions, some battery chemistries are at risk of thermal runaway, leading to cell rupture or combustion. As thermal runaway is determined not only by cell chemistry but also cell size, cell design, and charge[54] only the worst-case values are reflected here.

Cell chemistry Overcharge Overheat
Onset Onset Runaway Peak
SOC% °C °C °C/min
Lithium cobalt oxide 150[54] 165[54] 190[54] 440[54]
Lithium iron phosphate 100[54] 220[54] 240[54] 21[54]
Lithium manganese oxide 110[54] 210[54] 240[54] 100+[54]
Lithium nickel cobalt aluminum oxide 125[54] 140[54] 195[54] 260[54]
Lithium nickel manganese cobalt oxide 170[54] 160[54] 230[54] 100+[54]

See also[edit]

References[edit]

  1. ^ a b c d e f g "mpoweruk.com: Accumulator and battery comparisons (pdf)" (PDF). Retrieved 2016-02-28. 
  2. ^ a b c d e f g h i j k "All About Batteries, Part 3: Lead-Acid Batteries". Retrieved 2016-02-26. 
  3. ^ a b c d e f g h i "All About Batteries, Part 5: Carbon Zinc Batteries". Retrieved 2016-02-26. 
  4. ^ a b "Energizer Non-Rechargeable Batteries: Frequently Asked Questions" (PDF). Retrieved 2016-02-26. 
  5. ^ a b c d e f g h i j "All About Batteries, Part 6: Zinc-Air". Retrieved 2016-03-01. 
  6. ^ a b Narayan, R.; Viswanathan, B. (1998). Chemical And Electrochemical Energy Systems. Universities Press. p. 92. 
  7. ^ "Mercury Use in Batteries". Retrieved 2016-03-01. 
  8. ^ a b c d Crompton, Thomas Roy (2000). Batteries Reference Book. Newnes. Retrieved 2016-03-01. 
  9. ^ Herbert, W. S. "The Alkaline Manganese Dioxide Dry Cell" (PDF). Journal of the Electrochemical Society (August 1952). Retrieved 2016-03-01. 
  10. ^ a b "Alkaline Manganese Dioxide Handbook and Application Manual" (PDF). Retrieved 2016-03-01. 
  11. ^ a b c d "Primary and Rechargeable Battery Chemistries with Energy Density". Retrieved 2016-02-26. 
  12. ^ a b c d e f "All About Batteries, Part 4: Alkaline Batteries". Retrieved 2016-02-26. 
  13. ^ a b c d e f g h i j k l "Rechargeable Batteries — compared and explained in detail". Retrieved 2016-02-28. 
  14. ^ a b c "Data Sheet of Pure Energy XL Rechargeable Alkaline Cells" (PDF). Retrieved 2016-03-01. 
  15. ^ "The history of the battery: 2) Primary batteries". Retrieved 2016-03-01. 
  16. ^ a b "Silver Primary Cells & Batteries" (PDF). Archived from the original (PDF) on December 15, 2009. Retrieved 2016-03-01. 
  17. ^ a b c "ProCell Silver Oxide battery chemistry". Duracell. Archived from the original on 2009-12-20. Retrieved 2009-04-21. 
  18. ^ "Edison's non-toxic nickel-iron battery revived in ultrafast form". Retrieved 2016-02-28. 
  19. ^ a b c "Nickel-Iron Power" (PDF). Archived from the original on 2012-03-07. Retrieved 2017-03-19. 
  20. ^ "Energy Density from NREL Testing by Iron Edison" (PDF). Retrieved 2016-02-26. 
  21. ^ Jha, A.R. (2012-06-05). Next-Generation Batteries and Fuel Cells for Commercial, Military, and Space Applications. p. 28. ISBN 1439850666. 
  22. ^ Mpower: Nickel Iron Batteries
  23. ^ A description of the Chinese nickel–iron battery from BeUtilityFree
  24. ^ "Nickel Iron Battery Frequently Asked Questions" BeUtilityFree
  25. ^ a b "Nickel Cadmium Batteries". Electropaedia. Woodbank Communications. Retrieved 2016-02-29. 
  26. ^ a b c d e f "Testing NiCd and NiMH Batteries". Retrieved 2016-03-01. 
  27. ^ a b c "Getting to know more about batteries". Retrieved 2016-02-26. 
  28. ^ a b c d "Optimization of spacecraft electrical power subsystems" (PDF). Retrieved 2016-02-29. 
  29. ^ "Nickel-Hydrogen Battery Technology—Development and Status" (PDF). Archived from the original (PDF) on 2009-03-18. Retrieved 2012-08-29. 
  30. ^ Thaller, Lawrence H.; Zimmerman, Albert H. (2003). Nickel-hydrogen Life Cycle Testing. AIAA. 
  31. ^ a b c Spacecraft Power Systems Pag.9
  32. ^ "Ansmann AA – NiMH 2700mAh datasheet" (PDF). Retrieved 2016-03-02. 
  33. ^ a b "AA Battery Considerations". Retrieved 2016-03-01. 
  34. ^ "General Description". Eneloop.info. Sanyo. Archived from the original on 2012-09-02. Retrieved 2015-08-06. 
  35. ^ "Metero Webinar 2". Retrieved 2016-03-02. 
  36. ^ "SANYO new Eneloop Batteries Remains Energy Longer" (PDF). Retrieved 2016-03-02. 
  37. ^ a b Dyer, Chris K; Moseley, Patrick T; Ogumi, Zempachi; Rand, David A. J.; Scrosati, Bruno (2013). Encyclopedia of Electrochemical Power Sources. Newnes. p. 561. ISBN 0444527451. Retrieved 2016-03-03. 
  38. ^ "Lithium Manganese Dioxide Batteries CR2430" (PDF). Retrieved 2016-03-01. 
  39. ^ a b c d e f g h "Li/CFx Batteries: The Renaissance" (PDF). Retrieved 2016-03-03. 
  40. ^ a b "Chapter 1 Overview - Industrial Devices and Solutions" (PDF). Retrieved 2016-03-03. 
  41. ^ "Lithium Carbon-monofluoride (BR) Coin Cells and FB Encapsulated Lithium Coin Cells". Retrieved 2016-03-03. 
  42. ^ a b c d e f g "Lithium Iron Disulfide Handbook and Application Manual" (PDF). Retrieved 2016-03-03. 
  43. ^ "Energizer’s Lithium Iron Disulfide – The best of all worlds for the most demanding applications" (PDF). Retrieved 2016-03-03. 
  44. ^ a b c d e "Battery chemistry FINALLY explained". Retrieved 2016-02-26. 
  45. ^ "Hooked on lithium". Retrieved 2016-02-26. 
  46. ^ a b c d e f "Comparison Common Lithium Technologies" (PDF). Retrieved 2016-12-21. 
  47. ^ a b c d e f g h i j k l m n o p "Lithium Battery Technologies". Retrieved 2016-02-26. 
  48. ^ "LiFePO
    4
    : A Novel Cathode Material for Rechargeable Batteries", A.K. Padhi, K.S. Nanjundaswamy, J.B. Goodenough, Electrochemical Society Meeting Abstracts, 96-1, May, 1996, pp 73
  49. ^ https://www.victronenergy.nl/upload/documents/Datasheet-12,8-Volt-lithium-iron-phosphate-batteries-EN.pdf
  50. ^ a b "Lithium-ion Battery Overview" (PDF). Lighting Global (May 2012, Issue 10). Retrieved 2016-03-01. 
  51. ^ a b "Lithium nickel cobalt aluminium oxide". Retrieved 2016-03-01. 
  52. ^ "Battery Technology". Retrieved 2016-02-26. 
  53. ^ a b "Why Tesla's grid batteries will use two different chemistries". Retrieved 2016-03-02. 
  54. ^ a b c d e f g h i j k l m n o p q r s t u Doughty, Dan; Roth, E. Peter. "A General Discussion of Li Ion Battery Safety" (PDF). The Electrochemical Society Interface (Summer 2012). Retrieved 2016-02-27.