Complete Genomics

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search

Complete Genomics is a life sciences company that has developed and commercialized a DNA sequencing platform for human genome sequencing and analysis. This solution combines the company’s proprietary human genome sequencing technology with its informatics and data management software to provide finished variant reports and assemblies at Complete Genomics’ own commercial genome center in Mountain View, California. In March 2013 Complete Genomics was acquired by BGI-Shenzhen, a genomics services company in Shenzhen, Guangdong, China.[1]

History[edit]

Complete Genomics was founded in March 2006 by Clifford Reid, Radoje (Rade) Drmanac, and John Curson. Clifford Reid was the chairman, president and chief executive officer of Complete Genomics.

In February 2009, Complete Genomics announced that it had sequenced its first human genome and submitted the resulting variant data to the National Center for Biotechnology Information database. Then, in November 2009, Complete Genomics published sequence data for three human genomes in the journal Science.[2] By the end of 2009, Complete Genomics had sequenced 50 human genomes. To date, the company has sequenced more than 20,000 genomes.

The resulting data has supported research in diverse areas such as screening of embryos,[3] detection of genetic relationships,[4][5] neurology,[6] aging,[7] a novel Mendelian disease with neuromuscular and cardiac involvement,[8] eating disorders,[9] Prader-Willi syndrome and autism,[10] ophthalmology,[11] and oncology.[12][13][14][15][16] In 2014, a collaboration among Radboud University (The Netherlands), Maastricht University Medical Centre (The Netherlands), Central South University (China) and Complete Genomics identified major causes of intellectual disability using whole genome sequencing.[17]

Technology platform[edit]

Complete Genomics’ proprietary human genome sequencing technology is optimized for the exclusive study of human DNA, providing assembled sequences and variation files. The technology relies on DNA nanoball sequencing, which assembles short sequences of DNA into a full genome. It is designed to use lower volumes and concentrations of reagents than existing systems, and have large numbers of base reads per image.[2]

References[edit]

  1. ^ Specter, Michael (6 January 2014) The Gene Factory The New Yorker, Retrieved 28 October 2014
  2. ^ a b Drmanac R; Sparks, A. B.; Callow, M. J.; Halpern, A. L.; Burns, N. L.; Kermani, B. G.; Carnevali, P.; Nazarenko, I.; Nilsen, G. B.; Yeung, G.; Dahl, F.; Fernandez, A.; Staker, B.; Pant, K. P.; Baccash, J.; Borcherding, A. P.; Brownley, A.; Cedeno, R.; Chen, L.; Chernikoff, D.; Cheung, A.; Chirita, R.; Curson, B.; Ebert, J. C.; Hacker, C. R.; Hartlage, R.; Hauser, B.; Huang, S.; Jiang, Y.; et al. (November 2009). "Human genome sequencing using unchained base reads on self-assembling DNA nanoarrays". Science. 327 (5961): 78–81. Bibcode:2010Sci...327...78D. doi:10.1126/science.1181498. PMID 19892942. 
  3. ^ Winard R; et al. (2014). "In vitro screening of embryos by whole-genome sequencing: now, in the future or never?". Hum Reprod. 29 (4): 842–851. doi:10.1093/humrep/deu005. 
  4. ^ Li H; et al. (2014). "Relationship estimation from whole-genome sequence data". PLoS Genet. 10 (1): e1004144. doi:10.1371/journal.pgen.1004144. 
  5. ^ Su S-Y; et al. (2012). "Detection of identity by descent using next-generation whole genome sequencing data". HBMC Bioinformatics. 13: 121. doi:10.1186/1471-2105-13-121. 
  6. ^ Bundo M (2014). "Increased L1 retrotransposition in the neuronal genome in schizophrenia". Neuron. 81 (2): 306–313. doi:10.1016/j.neuron.2013.10.053. PMID 24389010. 
  7. ^ Kai Y; et al. (2013). "Aging as accelerated accumulation of somatic variants: whole-genome sequencing of centenarian and middle-aged monozygotic twin pairs". Twin Research and Human Genetics. 16 (6): 1026–1032. 
  8. ^ Wang K; et al. (2013). "Whole-genome DNA/RNA sequencing identifies truncating mutations in RBCK1 in a novel Mendelian disease with neuromuscular and cardiac involvement". Genome Medicine. 5 (7): 67. doi:10.1186/gm471. PMC 3971341Freely accessible. PMID 23889995. 
  9. ^ Cui H; et al. (2013). "Eating disorder predisposition is associated with ESRRA and HDAC4 mutations". J Clin Invest. 123 (11): 4706–4713. doi:10.1172/jci71400. PMC 3809805Freely accessible. PMID 24216484. 
  10. ^ Schaaf CP; et al. (2013). "Truncating mutations of MAGEL2 cause Prader-Willi phenotypes and autism". Nature Genetics. 45: 1405–1408. doi:10.1038/ng.2776. PMC 3819162Freely accessible. 
  11. ^ Nishiguchi KM; et al. (2012). "Genes associated with retinitis pigmentosa and allied diseases are frequently mutated in the general population". PLoS ONE. 7 (7): e41902. Bibcode:2012PLoSO...741902N. doi:10.1371/journal.pone.0041902. PMC 3407128Freely accessible. PMID 22848652. 
  12. ^ Ma Y; et al. (2012). "Developmental timing of mutations revealed by whole-genome sequencing of twins with acute lymphoblastic leukemia". Proc Natl Acad Sci USA. 110 (18): 7429–7433. Bibcode:2013PNAS..110.7429M. doi:10.1073/pnas.1221099110. PMC 3645544Freely accessible. PMID 23569245. 
  13. ^ Kiel MJ; et al. (2012). "Whole-genome sequencing identifies recurrent somatic NOTCH2 mutations in splenic marginal zone lymphoma". The Journal of Experimental Medicine. 209 (9): 1553–1565. doi:10.1084/jem.20120910. PMC 3428949Freely accessible. PMID 22891276. 
  14. ^ Molenaar JJ; et al. (2012). "Sequencing of neuroblastoma identifies chromothripsis and defects in neuritogenesis genes". Nature. 483: 589–593. Bibcode:2012Natur.483..589M. doi:10.1038/nature10910. PMID 22367537. 
  15. ^ Turajlic S; et al. (2011). "Whole genome sequencing of matched primary and metastatic acral melanomas". Genome Res. 22: 196–207. doi:10.1101/gr.125591.111. PMC 3266028Freely accessible. PMID 22183965. 
  16. ^ Yokoyama S; et al. (2011). "GA novel recurrent mutation in MITF predisposes to familial and sporadic melanoma". Nature. 480: 99–103. Bibcode:2011Natur.480...99Y. doi:10.1038/nature10630. PMC 3266855Freely accessible. 
  17. ^ Gilissen C; et al. (2014). "Genome sequencing identifies major causes of severe intellectual disability". Nature. 511 (7509): 344–347. Bibcode:2014Natur.511..344G. doi:10.1038/nature13394. PMID 24896178. 

External links[edit]