Completing the square
In elementary algebra, completing the square is a technique for converting a quadratic polynomial of the form
to the form
for some values of h and k.
Completing the square is used in
- solving quadratic equations,
- deriving the quadratic formula,
- graphing quadratic functions,
- evaluating integrals in calculus, such as Gaussian integrals with a linear term in the exponent,
- finding Laplace transforms.
In mathematics, completing the square is often applied in any computation involving quadratic polynomials.
Contents
Overview[edit]
Background[edit]
The formula in elementary algebra for computing the square of a binomial is:
For example:
In any perfect square, the coefficient of x is twice the number p, and the constant term is equal to p2.
Basic example[edit]
Consider the following quadratic polynomial:
This quadratic is not a perfect square, since 28 is not the square of 5:
However, it is possible to write the original quadratic as the sum of this square and a constant:
This is called completing the square.
General description[edit]
Given any monic quadratic
it is possible to form a square that has the same first two terms:
This square differs from the original quadratic only in the value of the constant term. Therefore, we can write
where . This operation is known as completing the square. For example:
Non-monic case[edit]
Given a quadratic polynomial of the form
it is possible to factor out the coefficient a, and then complete the square for the resulting monic polynomial.
Example:
This allows us to write any quadratic polynomial in the form
Formula[edit]
Scalar case[edit]
The result of completing the square may be written as a formula. For the general case:[1]
Specifically, when a = 1:
Matrix case[edit]
The matrix case looks very similar:
where has to be symmetric.
If is not symmetric the formulae for and have to be generalized to:
- .
Relation to the graph[edit]
In analytic geometry, the graph of any quadratic function is a parabola in the xy-plane. Given a quadratic polynomial of the form
the numbers h and k may be interpreted as the Cartesian coordinates of the vertex (or stationary point) of the parabola. That is, h is the x-coordinate of the axis of symmetry (i.e. the axis of symmetry has equation x = h), and k is the minimum value (or maximum value, if a < 0) of the quadratic function.
One way to see this is to note that the graph of the function ƒ(x) = x2 is a parabola whose vertex is at the origin (0, 0). Therefore, the graph of the function ƒ(x − h) = (x − h)2 is a parabola shifted to the right by h whose vertex is at (h, 0), as shown in the top figure. In contrast, the graph of the function ƒ(x) + k = x2 + k is a parabola shifted upward by k whose vertex is at (0, k), as shown in the center figure. Combining both horizontal and vertical shifts yields ƒ(x − h) + k = (x − h)2 + k is a parabola shifted to the right by h and upward by k whose vertex is at (h, k), as shown in the bottom figure.
Solving quadratic equations[edit]
Completing the square may be used to solve any quadratic equation. For example:
The first step is to complete the square:
Next we solve for the squared term:
Then either
and therefore
This can be applied to any quadratic equation. When the x2 has a coefficient other than 1, the first step is to divide out the equation by this coefficient: for an example see the non-monic case below.
Irrational and complex roots[edit]
Unlike methods involving factoring the equation, which is reliable only if the roots are rational, completing the square will find the roots of a quadratic equation even when those roots are irrational or complex. For example, consider the equation
Completing the square gives
so
Then either
In terser language:
so
Equations with complex roots can be handled in the same way. For example:
Non-monic case[edit]
For an equation involving a non-monic quadratic, the first step to solving them is to divide through by the coefficient of x2. For example:
Applying this procedure to the general form of a quadratic equation leads to the quadratic formula.
Other applications[edit]
Integration[edit]
Completing the square may be used to evaluate any integral of the form
using the basic integrals
For example, consider the integral
Completing the square in the denominator gives:
This can now be evaluated by using the substitution u = x + 3, which yields
Complex numbers[edit]
Consider the expression
where z and b are complex numbers, z* and b* are the complex conjugates of z and b, respectively, and c is a real number. Using the identity |u|2 = uu* we can rewrite this as
which is clearly a real quantity. This is because
As another example, the expression
where a, b, c, x, and y are real numbers, with a > 0 and b > 0, may be expressed in terms of the square of the absolute value of a complex number. Define
Then
so
Idempotent matrix[edit]
A matrix M is idempotent when M 2 = M. Idempotent matrices generalize the idempotent properties of 0 and 1. The completion of the square method of addressing the equation
shows that some idempotent 2 × 2 matrices are parametrized by a circle in the (a,b)-plane:
The matrix will be idempotent provided which, upon completing the square, becomes
In the (a,b)-plane, this is the equation of a circle with center (1/2, 0) and radius 1/2.
Geometric perspective[edit]
Consider completing the square for the equation
Since x2 represents the area of a square with side of length x, and bx represents the area of a rectangle with sides b and x, the process of completing the square can be viewed as visual manipulation of rectangles.
Simple attempts to combine the x2 and the bx rectangles into a larger square result in a missing corner. The term (b/2)2 added to each side of the above equation is precisely the area of the missing corner, whence derives the terminology "completing the square".
A variation on the technique[edit]
As conventionally taught, completing the square consists of adding the third term, v 2 to
to get a square. There are also cases in which one can add the middle term, either 2uv or −2uv, to
to get a square.
Example: the sum of a positive number and its reciprocal[edit]
By writing
we show that the sum of a positive number x and its reciprocal is always greater than or equal to 2. The square of a real expression is always greater than or equal to zero, which gives the stated bound; and here we achieve 2 just when x is 1, causing the square to vanish.
Example: factoring a simple quartic polynomial[edit]
Consider the problem of factoring the polynomial
This is
so the middle term is 2(x2)(18) = 36x2. Thus we get
(the last line being added merely to follow the convention of decreasing degrees of terms).
References[edit]
- ^ Narasimhan, Revathi (2008). Precalculus: Building Concepts and Connections. Cengage Learning. pp. 133–134. ISBN 0-618-41301-4., Section Formula for the Vertex of a Quadratic Function, page 133–134, figure 2.4.8
- Algebra 1, Glencoe, ISBN 0-07-825083-8, pages 539–544
- Algebra 2, Saxon, ISBN 0-939798-62-X, pages 214–214, 241–242, 256–257, 398–401
External links[edit]
| Wikimedia Commons has media related to Completing the square. |