Podophyllotoxin

From Wikipedia, the free encyclopedia
  (Redirected from Condylox)
Jump to navigation Jump to search
Podophyllotoxin
Podophyllotoxin2DCSD.svg
Clinical data
Trade names Condylox, Wartec, others
Synonyms (5R,5aR,8aR,9R)-9-hydroxy-5-(3,4,5-trimethoxyphenyl)-5,8,8a,9-tetrahydrofuro[3',4':6,7]naphtho[2,3-d][1,3]dioxol-6(5aH)-one
AHFS/Drugs.com Monograph
MedlinePlus a684055
Pregnancy
category
  • C
ATC code
Pharmacokinetic data
Elimination half-life 1.0 to 4.5 hours.
Identifiers
CAS Number
PubChem CID
DrugBank
ChemSpider
UNII
KEGG
ChEBI
ChEMBL
ECHA InfoCard 100.007.502 Edit this at Wikidata
Chemical and physical data
Formula C22H22O8
Molar mass 414.405 g/mol
3D model (JSmol)
 NoYesY (what is this?)  (verify)

Podophyllotoxin (PPT), also known as podofilox, is a medical cream that is used to treat genital warts and molluscum contagiosum.[1] It is not recommended in HPV infections without external warts.[1] It can be applied either by a healthcare provider or the person themselves.[1]

It is a non-alkaloid toxin lignan extracted from the roots and rhizomes of Podophyllum species.[2] A less refined form known as podophyllum resin is also available, but has greater side effects.[3][4]

Podophyllotoxin was isolated in 1880.[5] In the United Kingdom the price for the NHS of 3.5 ml of medication is about 14.49 pounds.[6] In the United States the price of a course of treatment is more than 200 USD.[7]

Medical uses[edit]

Podophyllotoxin possesses a large number of medical applications, as it is able to stop replication of both cellular and viral DNA by binding necessary enzymes. It can additionally destabilize microtubules and prevent cell division. Because of these interactions it is considered an antimiotic drug. Podophyllotixin and its derivatives are used as cathartic, purgative, antiviral agent, vesicant, antihelminthic, and antitumor agents. Podophollotixin derived antiumor agents include etoposide and teniposide.[8][9] These drugs have been successfully used in therapy against numerous cancers including testicular, breast, pancreatic, lung, stomach, and ovarian cancers.[10]

Derivatives of podophyllotoxin that have been engineered for their ability to fight tumors.[11]

Podophyllotoxin cream is commonly prescribed as a potent topical antiviral. It is used for the treatment of HPV infections with external warts as well as molluscum contagisum infections.[1] PPT cream is highly effective with minimal side effects, which are typically limited to itching, irritation, and redness.[12] 0.5% PPT cream is prescribed for twice daily applications for 3 days followed by 4 days with no application, this weekly cycle is repeated for 4 weeks.[13] It can also be prescribed as a gel, as opposed to cream. PPT is also sold under the names condyline and warticon.[14]

Adverse effects[edit]

The most common side effects of podophyllotoxin cream are typically limited to irritation of tissue surrounding the application site, including burning, redness, pain, itching, swelling.[15] Application can be immediately followed by burning or itching. Small sores, itching and peeling skin can also follow, for these reasons it is recommended that application be done in a way that limits contact with surrounding, uninfected tissue[16]

Neither podophyllin resin nor podophyllotoxin lotions or gels are used during pregnancy because these medications have been shown to be embroytoxic in both mice and rats. Additionally, antimitotic agents are not typically recommended during pregnancy.[17] Additionally, it has not been determined if podophyllotoxin can pass into breast milk from topical applications and therefore it is not recommended for breastfeeding women.[18]

Podophyllotoxin cream is safe for topical use, however, it can cause CNS depression as well as enteritis if ingested. The podophyllum resin from which podophyllotoxin is derived has the same effect.[19]

Mechanism of action[edit]

Podophyllotoxin destabilizes microtubules by binding tubulin and thus preventing cell division.[20][21] In contrast, some of its derivatives display binding activity to the enzyme topoisomerase II (Topo II) during the late S and early G2 stage. For instance, etoposide binds and stabilizes the temporary DNA break caused by the enzyme, disrupts the reparation of the break through which the double-stranded DNA passes, and consequently stops DNA unwinding and replication.[22] Mutants resistant to either podophyllotoxin, or to its topoisomerase II inhibitory derivatives such as etoposide (VP-16), have been described in Chinese hamster cells.[23][24] The mutually exclusive cross-resistance patterns of these mutants provide a highly specific means to distinguish the two kinds of podophyllotoxin derivatives.[24][25] Mutant Chinese hamster cells resistant to podophyllotoxin are affected in a protein P1 that was later identified as the mammalian HSP60 or chaperonin protein.[26][27][28] Furthermore podophyllotoxin is classified as an arytetralin lignan for its ability to bind and deactivate DNA.[29] It and it's derivates bind Topo II and prevent its ability to catalyze rejoining of DNA that has been broken for replication. Lastly, experimental evidence has shown that these arytetralin lignans can interact with cellular factors to create chemical DNA adducts thus further deactivating DNA.[29]

Chemistry[edit]

Structural characteristic[edit]

The structure of podophyllotoxin was first elucidated in the 1930s.[30] Podophyllotoxin bears four consecutive chiral centers, labelled C-1 through C-4 in the following image. The molecule also contains four almost planar fused rings. The podophyllotoxin molecule includes a number of oxygen containing functional groups: an alcohol, a lactone, three methoxy groups, and an acetal.[31]

Ring assignment and numbering of podophyllotoxin

Derivatives of podophyllotoxin are synthesized as properties of the rings and carbon 1 through 4 are diversified. For example, ring A is not essential to antimitotic activity. Aromatization of ring C leads to loss of activity, possibly from ring E no longer being placed on the axial position. In addition, the stereochemistry at C-2 and C-3 configures a trans-lactone, which has more activity than the cis counterpart. Chirality at C-1 is also important as it implies an axial position for ring E.[31]

Biosynthesis[edit]

The biosynthetic route of podophyllotoxin was not completely eludicidated for many years; however, in September 2015, the identity of the six missing enzymes in podophyllotoxin biosynthesis were reported for the first time.[32] Several prior studies have suggested a common pathway starting from coniferyl alcohol being converted to (+)-pinoresinol in the presence of a one-electron oxidant [8] through dimerization of stereospecific radical intermediate. Pinoresinol is subsequently reduced in the presence of co-factor NADPH to first lariciresinol, and ultimately secoisolariciresinol. Lactonization on secoisolariciresinol gives rise to matairesinol. Secoisolariciresinol is assumed to be converted to yatein through appropriate quinomethane intermediates,[8] leading to podophyllotoxin.

Proposed biosynthetic pathway leading to podophyllotoxin

A sequence of enzymes involved has been reported to be dirigent protein (DIR), to convert coniferyl alcohol to (+)-pinocresol, which is converted by pinocresol-lariciresinol reductase (PLR) to (-)-secoisolariciresinol, which is converted by sericoisolariciresinol dehydrogenase (SDH) to (-)-matairesinol, which is converted by CYP719A23 to (-)-pluviatolide, which is likely converted by Phex13114 (OMT1) to (-)-yatein, which is converted by Phex30848 (2-ODD) to (-)-deoxypodophyllotoxin.[32] Though not proceeding through the last step of producing podophyllotoxin itself, a combination of six genes from the mayapple enabled production of the etoposide aglycone in tobacco plants.[32]

Chemical Synthesis[edit]

Podophyllotoxin has been successfully synthesized in a laboratory, however, synthesis mechanisms have required a large number of steps which has resulted in low overall yield. Because of this challenge it is still more efficient to obtain podophyllotoxin from natural sources.[10] Four routes have been used to synthesize podophylotoxin with varying success. It has been synthesized using an oxo ester route,[33] lactonization of a dihydroxy acid,[34] cyclization of a conjugate addition product,[35] and utilization of a Diels-Alder reaction.[36]

Natural abundance[edit]

It is present at concentrations of 0.3 to 1.0% by mass in the rhizome of American Mayapple (Podophyllum peltatum).[22][37] Another common source of podophyllotoxin is the rhizomes of Sinopodophyllum hexandrum Royle (Berberidaceae).

It is biosynthesized from two molecules of coniferyl alcohol by phenolic oxidative coupling and a series of oxidations, reductions and methylations.[22]

References[edit]

  1. ^ a b c d "Podofilox". The American Society of Health-System Pharmacists. Retrieved 8 December 2016. 
  2. ^ Xu H, Lv M, Tian X (2009). "A review on hemisynthesis, biosynthesis, biological activities, mode of action, and structure-activity relationship of podophyllotoxins: 2003-2007". Current Medicinal Chemistry. 16 (3): 327–49. doi:10.2174/092986709787002682. PMID 19149581. 
  3. ^ "Podophyllum Resin". The American Society of Health-System Pharmacists. Retrieved 8 December 2016. 
  4. ^ WHO Model Formulary 2008 (PDF). World Health Organization. 2009. p. 307. ISBN 9789241547659. Retrieved 8 December 2016. 
  5. ^ Cragg GM, Kingston DG, Newman DJ (2011). Anticancer Agents from Natural Products, Second Edition (2 ed.). CRC Press. p. 97. ISBN 9781439813836. 
  6. ^ British national formulary : BNF 69 (69 ed.). British Medical Association. 2015. p. 826. ISBN 9780857111562. 
  7. ^ Hamilton R (2015). Tarascon Pocket Pharmacopoeia 2015 Deluxe Lab-Coat Edition. Jones & Bartlett Learning. p. 185. ISBN 9781284057560. 
  8. ^ a b c Gordaliza M, García PA, del Corral JM, Castro MA, Gómez-Zurita MA (September 2004). "Podophyllotoxin: distribution, sources, applications and new cytotoxic derivatives". Toxicon. 44 (4): 441–59. doi:10.1016/j.toxicon.2004.05.008. PMID 15302526. 
  9. ^ Damayanthi Y, Lown JW (June 1998). "Podophyllotoxins: current status and recent developments". Current Medicinal Chemistry. 5 (3): 205–52. PMID 9562603. 
  10. ^ a b Canel C, Moraes RM, Dayan FE, Ferreira D (May 2000). "Podophyllotoxin". Phytochemistry. 54 (2): 115–20. doi:10.1016/s0031-9422(00)00094-7. PMID 10872202. 
  11. ^ Liu YQ, Tian J, Qian K, Zhao XB, Morris-Natschke SL, Yang L, Nan X, Tian X, Lee KH (January 2015). "Recent progress on C-4-modified podophyllotoxin analogs as potent antitumor agents". Medicinal Research Reviews. 35 (1): 1–62. doi:10.1002/med.21319. PMC 4337794Freely accessible. PMID 24827545. 
  12. ^ Syed TA, Lundin S, Ahmad M (1994). "Topical 0.3% and 0.5% podophyllotoxin cream for self-treatment of molluscum contagiosum in males. A placebo-controlled, double-blind study". Dermatology. 189 (1): 65–8. doi:10.1159/000246787. PMID 8003791. 
  13. ^ "Podofilox Monograph for Professionals - Drugs.com". Drugs.com. Retrieved 2018-05-06. 
  14. ^ "Podophyllotoxin for anogenital warts; Podophyllotoxin info". patient.info. Retrieved 2018-05-06. 
  15. ^ Longstaff E, von Krogh G (April 2001). "Condyloma eradication: self-therapy with 0.15-0.5% podophyllotoxin versus 20-25% podophyllin preparations--an integrated safety assessment". Regulatory Toxicology and Pharmacology. 33 (2): 117–37. doi:10.1006/rtph.2000.1446. PMID 11350195. 
  16. ^ "PRODUCT INFORMATION WARTEC® SOLUTION" (PDF). GlaxoSmithKline Australia Pty Ltd. Retrieved 6 January 2013. 
  17. ^ Sundharam JA (July 1989). "Is Podophyllin Safe for Use in Pregnancy?". Archives of Dermatology. 125 (7): 1000. doi:10.1001/archderm.1989.01670190134022. 
  18. ^ "Podophyllotoxin | DermNet New Zealand". www.dermnetnz.org. Retrieved 2018-05-06. 
  19. ^ Moher LM, Maurer SA (August 1979). "Podophyllum toxicity: case report and literature review". The Journal of Family Practice. 9 (2): 237–40. PMID 458391. 
  20. ^ Hamidreza A, Amir A, Majid G (2017-06-01). "Podophyllotoxin: a novel potential natural anticancer agent". Avicenna Journal of Phytomedicine. 7 (4). doi:10.22038/ajp.2017.8779. 
  21. ^ Gordaliza M, Castro MA, del Corral JM, Feliciano AS (December 2000). "Antitumor properties of podophyllotoxin and related compounds". Current Pharmaceutical Design. 6 (18): 1811–39. doi:10.2174/1381612003398582. PMID 11102564. 
  22. ^ a b c Canel C, Moraes RM, Dayan FE, Ferreira D (2000). "Molecules of Interest: Podophyllotoxin". Phytochemistry. 54 (2): 115–120. doi:10.1016/s0031-9422(00)00094-7. 
  23. ^ Gupta RS, Ho TK, Moffat MR, Gupta R (January 1982). "Podophyllotoxin-resistant mutants of Chinese hamster ovary cells. Alteration in a microtubule-associated protein". The Journal of Biological Chemistry. 257 (2): 1071–8. PMID 7054166. 
  24. ^ a b Gupta, R.S. (1983). "Genetic, biochemical and cross-resistance studies with mutants of Chinese hamster ovary cells resistant to the anticancer drugs VM-26 and VP16-213". Cancer Res. 43: 1568–1574. 
  25. ^ Gupta RS (February 1983). "Podophyllotoxin-resistant mutants of Chinese hamster ovary cells: cross-resistance studies with various microtubule inhibitors and podophyllotoxin analogues". Cancer Research. 43 (2): 505–12. PMID 6848174. 
  26. ^ Picketts DJ, Mayanil CS, Gupta RS (July 1989). "Molecular cloning of a Chinese hamster mitochondrial protein related to the "chaperonin" family of bacterial and plant proteins". The Journal of Biological Chemistry. 264 (20): 12001–8. PMID 2568357. 
  27. ^ Jindal S, Dudani AK, Singh B, Harley CB, Gupta RS (May 1989). "Primary structure of a human mitochondrial protein homologous to the bacterial and plant chaperonins and to the 65-kilodalton mycobacterial antigen". Molecular and Cellular Biology. 9 (5): 2279–83. doi:10.1128/mcb.9.5.2279. PMC 363030Freely accessible. PMID 2568584. 
  28. ^ Trevor AJ, Katzung BG, Kruidering-Hall M, Masters SB (2013). "Chapter 54: Cancer Chemotherapy". Pharmacology examination & board review (10th ed.). New York: McGraw-Hill Medical. ISBN 978-0-07-178923-3. 
  29. ^ a b Botta B, Delle Monache G, Misiti D, Vitali A, Zappia G (September 2001). "Aryltetralin lignans: chemistry, pharmacology and biotransformations". Current Medicinal Chemistry. 8 (11): 1363–81. doi:10.2174/0929867013372292. PMID 11562272. 
  30. ^ Borsche W, Niemann J (1932). "Über Podophyllin". Justus Liebigs Ann. Chem. 494: 126–142. doi:10.1002/jlac.19324940113. 
  31. ^ a b You Y (2005). "Podophyllotoxin derivatives: current synthetic approaches for new anticancer agents". Current Pharmaceutical Design. 11 (13): 1695–717. doi:10.2174/1381612053764724. PMID 15892669. 
  32. ^ a b c Lau W, Sattely ES (September 2015). "Six enzymes from mayapple that complete the biosynthetic pathway to the etoposide aglycone". Science. 349 (6253): 1224–8. doi:10.1126/science.aac7202. PMID 26359402. 
  33. ^ Kende AS, King ML, Curran DP (June 1981). "Total synthesis of (.+-.)-4'-demethyl-4-epipodophyllotoxin by insertion-cyclization". The Journal of Organic Chemistry. 46 (13): 2826–2828. doi:10.1021/jo00326a056. 
  34. ^ Macdonald DI, Durst T (August 1988). "A highly stereoselective synthesis of podophyllotoxin and analogues based on an intramolecular Diels-Alder reaction". The Journal of Organic Chemistry. 53 (16): 3663–3669. doi:10.1021/jo00251a003. 
  35. ^ Ziegler FE, Schwartz JA (March 1978). "Synthetic studies on lignan lactones: aryl dithiane route to (.+-.)-podorhizol and (.+-.)-isopodophyllotoxone and approaches to the stegane skeleton". The Journal of Organic Chemistry. 43 (5): 985–991. doi:10.1021/jo00399a040. 
  36. ^ Klemm LH, Olson DR, White DV (December 1971). "Intramolecular Diels-Alder reactions. VII. Electroreduction of .alpha.,.beta.-unsaturated esters. I. Synthesis of rac-deoxypicropodophyllin by intramolecular Diels-Alder reaction plus trans addition of hydrogen". The Journal of Organic Chemistry. 36 (24): 3740–3743. doi:10.1021/jo00823a017. 
  37. ^ Hartwell JL, Schrecker AW (1951). "Components of Podophyllin. V. The Constitution of Podophyllotoxin". Journal of the American Chemical Society. 73 (6): 2909–2916. doi:10.1021/ja01150a143. 

Further reading[edit]

  • Kelly M, Hartwell JL (February 1954). "The biological effects and the chemical composition of podophyllin: a review". Journal of the National Cancer Institute. 14 (4): 967–1010. PMID 13233838. 
  • Hartwell JL, Schrecker AW (1951). "Components of Podophyllin. V. The Constitution of Podophyllotoxin". Journal of the American Chemical Society. 73 (6): 2909–2916. doi:10.1021/ja01150a143.