Constant problem

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search

In mathematics, the constant problem is the problem of deciding whether a given expression is equal to zero.

The problem[edit]

This problem is also referred to as the identity problem[1] or the method of zero estimates. It has no formal statement as such but refers to a general problem prevalent in transcendental number theory. Often proofs in transcendence theory are proofs by contradiction. Specifically, they use some auxiliary function to create an integer n ≥ 0, which is shown to satisfy n < 1. Clearly, this means that n must have the value zero, and so a contradiction arises if one can show that in fact n is not zero.

In many transcendence proofs, proving that n ≠ 0 is very difficult, and hence a lot of work has been done to develop methods that can be used to prove the non-vanishing of certain expressions. The sheer generality of the problem is what makes it difficult to prove general results or come up with general methods for attacking it. The number n that arises may involve integrals, limits, polynomials, other functions, and determinants of matrices.


In certain cases algorithms or other methods exist for proving that a given expression is non-zero, or of showing that the problem is undecidable. For example, if x1, ..., xn are real numbers, then there is an algorithm[2] for deciding whether there are integers a1, ..., an such that

If the expression we are interested in contains a oscillating function, such as the sine or cosine function, then it has been shown that the problem is undecidable, a result known as Richardson's theorem. In general, methods specific to the expression being studied are required to prove that it cannot be zero.

See also[edit]


  1. ^ Richardson, Daniel (1968). "Some Unsolvable Problems Involving Elementary Functions of a Real Variable". Journal of Symbolic Logic. 33: 514–520. doi:10.2307/2271358.
  2. ^ Bailey, David H. (January 1988). "Numerical Results on the Transcendence of Constants Involving π, e, and Euler's Constant" (PDF). Mathematics of Computation. 50 (20): 275–281. doi:10.1090/S0025-5718-1988-0917835-1.