Contact force

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search
Block on a ramp and corresponding free body diagram of the block showing the contact force from the ramp onto the bottom of the block and separated into two components, a normal force N and a friction force f, along with the body force of gravity mg acting at the center of mass.

A contact force is any force that requires contact to occur.[1] Contact forces are ubiquitous and are responsible for most visible interactions between macroscopic collections of matter. Moving a couch across a floor, pushing a car up a hill, kicking a ball or pushing a desk across a room are some of the everyday examples where contact forces are at work. In the first case the force is continuously applied by the person on the car, while in the second case the force is delivered in a short impulse. Contact forces are often decomposed into orthogonal components, one perpendicular to the surface(s) in contact called the normal force, and one parallel to the surface(s) in contact, called the friction force.[1]

In the Standard Model of modern physics, the four fundamental forces of nature are known to be non-contact forces. The strong and weak interaction primarily deal with forces within atoms, while gravitational effects are only obvious on an ultra-macroscopic scale. Molecular and quantum physics show that the electromagnetic force is the fundamental interaction responsible for contact forces. The interaction between macroscopic objects can be roughly described as resulting from the electromagnetic interactions between protons and electrons of the atomic constituents of these objects. Everyday objects do not actually touch; rather, contact forces are the result of the interactions of the electrons at or near the surfaces of the objects.[1]

See also[edit]


  1. ^ a b c Plesha, Gray, and Costanzo (2010). Engineering Mechanics - Statics. McGraw-Hill. pp. 8–9.CS1 maint: multiple names: authors list (link)