Striatum

From Wikipedia, the free encyclopedia
  (Redirected from Corpus striatum)
Jump to: navigation, search
"Neostriatum" redirects here. For the avian brain region formerly called the neostriatum, see nidopallium.
Striatum
BrainCaudatePutamen.svg
purple=caudate and putamen, orange=thalamus
Details
Latin neostriatum
Part of Basal ganglia[1]
Reward system[2][3]
Components Ventral striatum[2][3][4]
Dorsal striatum[2][3][4]
Identifiers
NeuroLex ID Striatum
TA A14.1.09.515
FMA 77616
Anatomical terms of neuroanatomy

The striatum, also known as the neostriatum or striate nucleus, is a subcortical part of the forebrain and a critical component of the reward system. It receives glutamatergic and dopaminergic inputs from different sources and serves as the primary input to the basal ganglia system. In all primates, the dorsal striatum is divided by a white matter tract called the internal capsule into two sectors called the caudate nucleus and the putamen.[4] The ventral striatum is composed of the nucleus accumbens and olfactory tubercle in primates.[4] Functionally, the striatum regulates multiple aspects of cognition, including motor and action planning, decision-making, motivation, reinforcement, and reward perception.[2][3][4]

The corpus striatum, a macrostructure which contains the striatum, is composed of the entire striatum and the globus pallidus.[5] The lenticular nucleus refers to the putamen together with the globus pallidus.[6]

Structure[edit]

Cell types[edit]

The striatum is heterogeneous in terms of its component neurons.[7]

  • Spiny projection neurons, commonly referred to as medium spiny neurons, are the principal neurons of the striatum.[2] They are GABAergic and, thus, are classified as inhibitory neurons. Medium spiny projection neurons comprise 95% of the total neuronal population of the human striatum.[2] Medium spiny neurons have two primary phenotypes (i.e., characteristic types): D1-type MSNs of the "direct pathway" and D2-type MSNs of the "indirect pathway".[2][4][8] A subpopulation of MSNs contain both D1-type and D2-type receptors, with approximately 40% of striatal MSNs expressing both DRD1 and DRD2 mRNA.[2][4][8]
  • Cholinergic interneurons release acetylcholine, which has a variety of important effects in the striatum. In humans, non-human primates, and rodents, these interneurons respond to salient environmental stimuli with stereotyped responses that are temporally aligned with the responses of dopaminergic neurons of the substantia nigra.[9][10] The large aspiny cholinergic interneurons themselves are affected by dopamine through dopamine receptors D5.[11]
  • There are many types of GABAergic interneurons.[7] The best known are parvalbumin expressing interneurons, also known as fast-spiking interneurons, which participate in powerful feed-forward inhibition of principal neurons.[12] Also, there are GABAergic interneurons that express tyrosine hydroxylase,[13] somatostatin, nitric oxide synthase and neuropeptide-Y. Recently, two types of neuropeptide-y expressing GABAergic interneurons have been described in detail,[14] one of which translates synchronous activity of cholinergic interneurons into inhibition of principal neurons.[15]

Adult humans continuously produce new neurons in the striatum, and these neurons could play a possible role in new treatments for neurodegenerative disorders.[16]

Anatomical subdivisions[edit]

Matrix and Striosome Compartments: Fluorescence microscopy image of a coronal mouse brain section, cut through the striatum (caudate putamen, CP). The matrix/striosome division is here revealed by dual immunohistochemical (calbindin, CALB; green) and transgenic (red fluorescent protein, RFP; red) labeling of the matrix compartment, using the matrix-specific Cre-mouse line Gpr101-Cre.[17] Unlabeled patches constitute striosomes.
This is a transverse section of the striatum from a structural MR image. The striatum includes the caudate nucleus and putamen. The image also includes the globus pallidus, which is sometimes included when using the term corpus striatum.
This is a transverse section of the striatum from a structural MR image. The striatum, in red, includes the caudate nucleus (top), the putamen (right), and, when including the term 'corpus' striatum, the globus pallidus (lower left).

The striatum is divided into ventral and dorsal subregions, based upon function and connectivity. The ventral striatum, and the nucleus accumbens in particular, primarily mediates reward cognition, whereas the dorsal striatum primarily mediates cognition involving motor function and certain executive functions; there is a small degree of overlap, as the dorsal striatum is a component of the reward system and the nucleus accumbens core mediates the encoding of new motor programs associated with future reward acquisition. The ventral striatum is composed of the nucleus accumbens and olfactory tubercle, whereas the dorsal striatum is composed of the caudate nucleus and putamen.

The observable anatomical subdivisions of the dorsal striatum (caudate nucleus and putamen), in essence induced by the internal capsule, do not completely overlap with now-accepted anatomo-functional subdivisions. The selective distribution of the axonal terminal arborisations of cortical sources differentiate the sensorimotor striatum, mainly putaminal but located in its dorsal part and in the lateroinferior part of the caudate. A great part of the remaining volume (in essence, caudate) receives axonal endings from the frontal, parietal, and temporal cortex, forming the associative striatum. The separation between these two territories is rather clearcut and observable using calbindin immunochemistry. A third entity, the most inferomedial, raises more problems, as there is no general agreement about its border with the associative striatum.

The striatum can also be differentiated based on immunochemical characteristics—in particular with regard to acetylcholinesterase and calbindin —into "compartments", consisting of "striosomes" and the surrounding "matrix" (See figure "Matrix and Striosome Compartments").

Overview of the main circuits of the basal ganglia. The striatum is shown in blue. Picture shows 2 coronal slices that have been superimposed to include the involved basal ganglia structures. + and signs at the point of the arrows indicate respectively whether the pathway is excitatory or inhibitory in effect. Green arrows refer to excitatory glutamatergic pathways, red arrows refer to inhibitory GABAergic pathways and turquoise arrows refer to dopaminergic pathways that are excitatory on the direct pathway and inhibitory on the indirect pathway.

Inputs (afferent connections)[edit]

The most important afferent in terms of quantity of axons is the corticostriatal connection. Many parts of the neocortex innervate the dorsal striatum. The cortical pyramidal neurons projecting to the striatum are located in layers II-VI, but the most dense projections come from layer V.[18] They end mainly on the spines of the spiny neurons. They are glutamatergic, exciting striatal neurons. Another well-known afferent is the nigrostriatal connection arising from the neurons of the substantia nigra pars compacta. While cortical axons synapse mainly on spine heads of spiny neurons, nigral axons synapse mainly on spine shafts. In primates, the thalamostriatal afferent comes from the central median-parafascicular complex of the thalamus (see primate basal ganglia system). This afferent is glutamatergic. The participation of truly intralaminar neurons is much more limited. The striatum also receives afferents from other elements of the basal ganglia such as the subthalamic nucleus (glutamatergic) or the external globus pallidus (GABAergic).

Targets (efferent connections)[edit]

Further information: Medium spiny neuron

Striatal outputs from both the dorsal and ventral components are primarily composed of medium spiny neurons (MSNs), a type of projection neuron, which have two primary phenotypes: "indirect" MSNs that express D1-type receptors and "direct" MSNs that express D2-type receptors.[2][4]

The basal ganglia core is made up of the striatum along with the regions to which it projects directly, via the striato-pallidonigral bundle. The striato-pallidonigral bundle is a very dense bundle of sparsely myelinated axons, giving a whitish appearance. This projection comprises successively the external globus pallidus (GPe), the internal globus pallidus (GPi), the pars compacta of the substantia nigra (SNc), and the pars reticulata of substantia nigra (SNr). The neurons of this projection are inhibited by GABAergic synapses from the dorsal striatum. Among these targets, the GPe does not send axons outside the system. Others send axons to the superior colliculus. Two others comprise the output to the thalamus, forming two separate channels: one through the internal segment of the globus pallidus to the ventral oralis nuclei of the thalamus and from there to the cortical supplementary motor area (SMA) and another through the substantia nigra to the ventral anterior nuclei of the thalamus and from there to the frontal cortex and the oculomotor cortex.

Function[edit]

The striatum is best known for its role in the planning and modulation of movement pathways, but is also potentially involved in a variety of other cognitive processes involving executive function, such as working memory.[19] Metabotropic dopamine receptors are present both on spiny neurons and on cortical axon terminals. Second messenger cascades triggered by activation of these dopamine receptors can modulate pre- and postsynaptic function, both in the short term and in the long term.[20][21] In humans, the striatum is activated by stimuli associated with reward, but also by aversive, novel, unexpected, or intense stimuli, and cues associated with such events.[22] fMRI evidence suggests that the common property linking these stimuli, to which the striatum is reacting, is salience under the conditions of presentation.[23][24] A number of other brain areas and circuits are also related to reward, such as frontal areas. The striatum is also associated with novelty-related decision-making behaviors.[25] Functional maps of the striatum reveal interactions with widely distributed regions of the cerebral cortex important to a diverse range of functions.[26]

The ventral tegmental dopaminergic neurons that innervate portions of the striatum are the primary site of rewarding feeling. Intracranial stimulation studies first done by James Olds and collaborators in the 1950s showed that implants in this brain area will elicit bar pressing from rats for many hours at a time.[27] Interference with dopamine neurotransmission impairs behavioral reward processes and their underlying neuronal mechanisms.[21][22]

Clinical significance[edit]

Parkinson's disease[edit]

Parkinson's disease results in loss of dopaminergic innervation to the dorsal striatum (and other basal ganglia) and a cascade of consequences. Atrophy of the striatum is also involved in Huntington's disease, choreas, choreoathetosis, and dyskinesias.[28]

Addiction[edit]

Addiction, a disorder of the brain's reward system, arises through pathological whole cell neuroplasticity in the D1-type medium spiny neurons of the ventral striatum, which are causally mediated through gene transcription by ΔFosB transcription factor. ΔFosB is an inducible gene which is increasingly expressed in the nucleus accumbens following high doses of an addictive drug or overexposure to other addictive stimuli.

Bipolar disorder[edit]

There is an association between striatal expression of the PDE10A gene and some bipolar disorder I patients.[29]

History[edit]

In the seventeenth and eighteenth centuries, the term "corpus striatum" was used to designate many distinct, deep, infracortical elements of the hemisphere.[30] In 1941, Cécile and Oskar Vogt simplified the nomenclature by proposing the term striatum for all elements built with striatal elements (see primate basal ganglia system): the caudate, the putamen, and the fundus striati, that ventral part linking the two preceding together ventrally to the inferior part of the internal capsule.

The term neostriatum was forged by comparative anatomists comparing the subcortical structures between vertebrates, because it was thought to be a phylogenetically newer section of the corpus striatum. The term is still used by some sources, including Medical Subject Headings.[31]

See also[edit]

References[edit]

  1. ^ "Basal ganglia". BrainInfo. Retrieved 16 August 2015. 
  2. ^ a b c d e f g h i Yager LM, Garcia AF, Wunsch AM, Ferguson SM (August 2015). "The ins and outs of the striatum: Role in drug addiction". Neuroscience 301: 529–541. doi:10.1016/j.neuroscience.2015.06.033. PMID 26116518. [The striatum] receives dopaminergic inputs from the ventral tegmental area (VTA) and the substantia nigra (SNr) and glutamatergic inputs from several areas, including the cortex, hippocampus, amygdala, and thalamus (Swanson, 1982; Phillipson and Griffiths, 1985; Finch, 1996; Groenewegen et al., 1999; Britt et al., 2012). These glutamatergic inputs make contact on the heads of dendritic spines of the striatal GABAergic medium spiny projection neurons (MSNs) whereas dopaminergic inputs synapse onto the spine neck, allowing for an important and complex interaction between these two inputs in modulation of MSN activity ... It should also be noted that there is a small population of neurons in the NAc that coexpress both D1 and D2 receptors, though this is largely restricted to the NAc shell (Bertran- Gonzalez et al., 2008). ... Neurons in the NAc core and NAc shell subdivisions also differ functionally. The NAc core is involved in the processing of conditioned stimuli whereas the NAc shell is more important in the processing of unconditioned stimuli; Classically, these two striatal MSN populations are thought to have opposing effects on basal ganglia output. Activation of the dMSNs causes a net excitation of the thalamus resulting in a positive cortical feedback loop; thereby acting as a ‘go’ signal to initiate behavior. Activation of the iMSNs, however, causes a net inhibition of thalamic activity resulting in a negative cortical feedback loop and therefore serves as a ‘brake’ to inhibit behavior ... there is also mounting evidence that iMSNs play a role in motivation and addiction (Lobo and Nestler, 2011; Grueter et al., 2013). ... Together these data suggest that iMSNs normally act to restrain drug-taking behavior and recruitment of these neurons may in fact be protective against the development of compulsive drug use. 
  3. ^ a b c d Taylor SB, Lewis CR, Olive MF (February 2013). "The neurocircuitry of illicit psychostimulant addiction: acute and chronic effects in humans". Subst. Abuse Rehabil. 4: 29–43. doi:10.2147/SAR.S39684. PMC 3931688. PMID 24648786. 
  4. ^ a b c d e f g h Ferré S, Lluís C, Justinova Z, Quiroz C, Orru M, Navarro G, Canela EI, Franco R, Goldberg SR (June 2010). "Adenosine-cannabinoid receptor interactions. Implications for striatal function". Br. J. Pharmacol. 160 (3): 443–453. doi:10.1111/j.1476-5381.2010.00723.x. PMC 2931547. PMID 20590556. Two classes of MSNs, which are homogeneously distributed in the striatum, can be differentiated by their output connectivity and their expression of dopamine and adenosine receptors and neuropeptides. In the dorsal striatum (mostly represented by the nucleus caudate-putamen), enkephalinergic MSNs connect the striatum with the globus pallidus (lateral globus pallidus) and express the peptide enkephalin and a high density of dopamine D2 and adenosine A2A receptors (they also express adenosine A1 receptors), while dynorphinergic MSNs connect the striatum with the substantia nigra (pars compacta and reticulata) and the entopeduncular nucleus (medial globus pallidus) and express the peptides dynorphin and substance P and dopamine D1 and adenosine A1 but not A2A receptors ... These two different phenotypes of MSN are also present in the ventral striatum (mostly represented by the nucleus accumbens and the olfactory tubercle). However, although they are phenotypically equal to their dorsal counterparts, they have some differences in terms of connectivity. First, not only enkephalinergic but also dynorphinergic MSNs project to the ventral counterpart of the lateral globus pallidus, the ventral pallidum, which, in fact, has characteristics of both the lateral and medial globus pallidus in its afferent and efferent connectivity. In addition to the ventral pallidum, the medial globus pallidus and the substantia nigra-VTA, the ventral striatum sends projections to the extended amygdala, the lateral hypothalamus and the pedunculopontine tegmental nucleus. ... It is also important to mention that a small percentage of MSNs have a mixed phenotype and express both D1 and D2 receptors (Surmeier et al., 1996). 
  5. ^ "Corpus striatum". BrainInfo. Retrieved 16 August 2015. 
  6. ^ "DBS: The Basal Ganglia". 
  7. ^ a b Tepper JM, Tecuapetla F, Koós T, Ibáñez-Sandoval O. Front Neuroanat. 2010 Dec 29;4:150. doi: 10.3389/fnana.2010.00150. PMID 21228905
  8. ^ a b Nishi A, Kuroiwa M, Shuto T (July 2011). "Mechanisms for the modulation of dopamine d(1) receptor signaling in striatal neurons". Front Neuroanat 5: 43. doi:10.3389/fnana.2011.00043. PMC 3140648. PMID 21811441. Dopamine plays critical roles in the regulation of psychomotor functions in the brain (Bromberg-Martin et al., 2010; Cools, 2011; Gerfen and Surmeier, 2011). The dopamine receptors are a superfamily of heptahelical G protein-coupled receptors, and are grouped into two categories, D1-like (D1, D5) and D2-like (D2, D3, D4) receptors, based on functional properties to stimulate adenylyl cyclase (AC) via Gs/olf and to inhibit AC via Gi/o, respectively ... It has been demonstrated that D1 receptors form the hetero-oligomer with D2 receptors, and that the D1–D2 receptor hetero-oligomer preferentially couples to Gq/PLC signaling (Rashid et al., 2007a,b). The expression of dopamine D1 and D2 receptors are largely segregated in direct and indirect pathway neurons in the dorsal striatum, respectively (Gerfen et al., 1990; Hersch et al., 1995; Heiman et al., 2008). However, some proportion of medium spiny neurons are known to expresses both D1 and D2 receptors (Hersch et al., 1995). Gene expression analysis using single cell RT-PCR technique estimated that 40% of medium spiny neurons express both D1 and D2 receptor mRNA (Surmeier et al., 1996). 
  9. ^ Goldberg, JA; Reynolds, JN (December 2011). "Spontaneous firing and evoked pauses in the tonically active cholinergic interneurons of the striatum.". Neuroscience 198: 27–43. doi:10.1016/j.neuroscience.2011.08.067. PMID 21925242. 
  10. ^ "Coincident but distinct messages of midbrain dopamine and striatal tonically active neurons.". Neuron 43 (1): 133–43. July 2004. doi:10.1016/j.neuron.2004.06.012. PMID 15233923. 
  11. ^ Bergson, C; Mrzljak, L; Smiley, J. F.; Pappy, M; Levenson, R; Goldman-Rakic, P. S. (1995). "Regional, cellular, and subcellular variations in the distribution of D1 and D5 dopamine receptors in primate brain". The Journal of neuroscience : the official journal of the Society for Neuroscience 15 (12): 7821–36. PMID 8613722. 
  12. ^ "Inhibitory control of neostriatal projection neurons by GABAergic interneurons.". Nat Neurosci 2 (5): 467–72. May 1999. doi:10.1038/8138. PMID 10321252. 
  13. ^ Ibáñez-Sandoval, O; Tecuapetla, F; Unal, B; Shah, F; Koós, T; Tepper, JM (2010). "Electrophysiological and morphological characteristics and synaptic connectivity of tyrosine hydroxylase-expressing neurons in adult mouse striatum.". J Neurosci 30 (20): 6999–7016. doi:10.1523/JNEUROSCI.5996-09.2010. PMID 20484642. 
  14. ^ Ibáñez-Sandoval, O; Tecuapetla, F; Unal, B; Shah, F; Koós, T; Tepper, JM (November 2011). "A novel functionally distinct subtype of striatal neuropeptide Y interneuron.". J Neurosci 31 (46): 16757–69. doi:10.1523/JNEUROSCI.2628-11.2011. PMID 22090502. 
  15. ^ English DF, Ibanez-Sandoval O, Stark E, Tecuapetla F, Buzsáki G, Deisseroth K, Tepper JM, Koos T. Nat Neurosci. 2011 Dec 11;15(1):123-30. doi: 10.1038/nn.2984. PMID 22158514
  16. ^ "Neuron-generating brain region could hold promise for neurodegenerative therapies". Science Daily. 20 February 2014. Retrieved 24 February 2014. 
  17. ^ Reinius B et al. (27 March 2015). "Conditional targeting of medium spiny neurons in the striatal matrix". Front. Behav. Neurosci. 
  18. ^ Rosell A, Giménez-Amaya JM (1999). "Anatomical re-evaluation of the corticostriatal projections to the caudate nucleus: a retrograde labeling study in the cat". Neurosci Res 34 (4): 257–69. doi:10.1016/S0168-0102(99)00060-7. PMID 10576548. 
  19. ^ Voytek, Bradley; Knight, Robert T. (19 October 2010). "Prefrontal cortex and basal ganglia contributions to working memory". Proceedings of the National Academy of Sciences of the United States of America 107 (42): 18167–18172. doi:10.1073/pnas.1007277107. 
  20. ^ Greengard, P (2001). "The neurobiology of slow synaptic transmission". Science 294 (5544): 1024–30. doi:10.1126/science.294.5544.1024. PMID 11691979. 
  21. ^ a b Cachope, R; Cheer (2014). "Local control of striatal dopamine release". Frontiers in Behavioral Neuroscience 8: 188. doi:10.3389/fnbeh.2014.00188. PMC 4033078. PMID 24904339. 
  22. ^ a b Volman, S. F.; Lammel; Margolis; Kim; Richard; Roitman; Lobo (2013). "New insights into the specificity and plasticity of reward and aversion encoding in the mesolimbic system". Journal of Neuroscience 33 (45): 17569–76. doi:10.1523/JNEUROSCI.3250-13.2013. PMC 3818538. PMID 24198347. 
  23. ^ LUNA, BEATRIZ; SWEENEY, JOHN A. (1 June 2004). "The Emergence of Collaborative Brain Function: fMRI Studies of the Development of Response Inhibition". Annals of the New York Academy of Sciences 1021 (1): 296–309. doi:10.1196/annals.1308.035. 
  24. ^ "Department of Physiology, Development and Neuroscience: About the Department". 
  25. ^ http://www.ucl.ac.uk/news/news-articles/0806/08062502
  26. ^ Choi EY, Yeo BT, Buckner RL (2012). "The organization of the human striatum estimated by intrinsic functional connectivity". Journal of Neurophysiology 108 (8): 2242–2263. doi:10.1152/jn.00270.2012. PMID 22832566. 
  27. ^ Olds, J; Milner, P (1954). "Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain.".". Journal of comparative and physiological psychology 47 (6): 419–27. doi:10.1037/h0058775. 
  28. ^ Walker FO (January 2007). "Huntington's disease". Lancet 369 (9557): 218–28. doi:10.1016/S0140-6736(07)60111-1. PMID 17240289. 
  29. ^ Science Daily: Scientists pinpoint gene variations linked to higher risk of bipolar disorder
  30. ^ Raymond Vieussens, 1685
  31. ^ Neostriatum at the US National Library of Medicine Medical Subject Headings (MeSH)

External links[edit]