Cross-serial dependencies

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search
A diagram showing cross-serial dependency using lines and colors to represent the dependent pairs.
A schematic showing cross-serial dependencies. Notice that the w's and v's, which represent words, each form respective series. Notice also that the lines representing the dependency relations mutually overlap.

In linguistics, cross-serial dependencies (also called crossing dependencies by some authors[1]) occur when the lines representing the dependency relations between two series of words cross over each other.[2] They are of particular interest to linguists who wish to determine the syntactic structure of natural language; languages containing an arbitrary number of them are non-context-free. By this fact, Dutch[3] and Swiss-German[4] have been proved to be non-context-free.


A Swiss-German sentence containing cross-serial dependencies (shown as lines between the verbs and their objects). The English translation with its dependencies, which do not cross, is shown for comparison.
A more complicated example.

As Swiss-German allows verbs and their arguments to be ordered cross-serially, we have the following example, taken from Shieber:[4]

...mer em Hans es huus hälfed aastriiche.
...we Hans (dat) the house (acc) help paint.

That is, "we help Hans paint the house."

Notice that the sequential noun phrases em Hans (Hans) and es huus (the house), and the sequential verbs hälfed (help) and aastriiche (paint) both form two separate series of constituents. Notice also that the dative verb hälfed and the accusative verb aastriiche take the dative em Hans and accusative es huus as their arguments, respectively.

Why languages containing cross-serial dependencies are non-context-free[edit]

In Swiss-German sentences, the number of verbs of a grammatical case (dative or accusative) must match the number of objects of that case. Additionally, a sentence containing an arbitrary number of such objects is admissible (in principle). Hence, the following formal language is grammatical:

It can be seen that is of the form . By taking another image[clarification needed] to remove the , and , the non-context-free[5][clarification needed] language may be observed. All spoken languages which contain cross-serial dependencies also contain a language of a form similar to .[2]


Research in mildly context-sensitive language has attempted to identify a narrower and more computationally tractable subclass of context-sensitive languages that can capture context sensitivity as found in natural languages. For example, cross-serial dependencies can be expressed in linear context-free rewriting systems (LCFRS); one can write a LCFRS grammar for {anbncndn | n ≥ 1} for example.[6][7][8]


  1. ^ Stabler, Edward (2004), "Varieties of crossing dependencies: structure dependence and mild context sensitivity" (PDF), Cognitive Science, 28 (5): 699–720, doi:10.1016/j.cogsci.2004.05.002.
  2. ^ a b Jurafsky, Daniel; Martin, James H. (2000). Speech and Language Processing (1st ed.). Prentice Hall. pp. 473–495. ISBN 978-0-13-095069-7..
  3. ^ Bresnan, Joan; M. Kaplan, Ronald (1982), "Cross-serial dependencies in Dutch", Linguistic Inquiry, 13 (4): 613–635.
  4. ^ a b Shieber, Stuart (1985), "Evidence against the context-freeness of natural language" (PDF), Linguistics and Philosophy, 8 (3): 333–343, doi:10.1007/BF00630917, S2CID 222277837.
  5. ^ John E. Hopcroft, Rajeev Motwani, Jeffrey D. Ullman (2000). Introduction to Automata Theory, Languages, and Computation (2nd ed.). Pearson Education. ISBN 978-0-201-44124-6.{{cite book}}: CS1 maint: multiple names: authors list (link).
  6. ^[bare URL PDF]
  7. ^[bare URL PDF]
  8. ^ Laura Kallmeyer (2010). Parsing Beyond Context-Free Grammars. Springer Science & Business Media. pp. 1–5. ISBN 978-3-642-14846-0.