Current-mode logic

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search

Current mode logic (CML), or source-coupled logic (SCL), is a digital design style used both for logic gates and for board-level digital signalling of digital data .

The basic principle of CML is that current from a constant current generator is steered between two alternate paths depending on whether a logic zero or logic one is being represented. Typically, the generator is connected to the two sources of a pair of differential FETs with the two paths being their two drains. Bipolar equivalents operate in the same way, with the output being taken from the collectors of the BJT transistors.

As a differential PCB-level interconnect, it is intended to transmit data at speeds between 312.5 Mbit/s and 3.125 Gbit/s across standard printed circuit boards.[1]

CML termination scheme

The transmission is point-to-point, unidirectional, and is usually terminated at the destination with 50 Ω resistors to Vcc on both differential lines. CML is frequently used in interfaces to fiber optic components. The principle difference between CML and ECL as a link technology is the output impedance of the driver stage: the emitter follower of ECL has a low resistance of around 5 ohms whereas CML connects to the drains of the driving transistors, that have a high impedance, and so the impedance of the pull up/down network (typically 50 ohm resistive) is the effective output impedance. Having a drive impedance that is closer to the characteristic impedance of the driven line greatly reduces undesirable ringing.

CML signals have also been found useful for connections between modules. CML is the physical layer used in DVI and HDMI video links, the interfaces between a display controller and a monitor.[2]

In addition CML has been widely used in high-speed integrated systems, such as telecommunication systems such as: serial data transceivers, frequency synthesizers.

Operation[edit]

The fast operation of CML circuits is mainly due to their lower output voltage swing compared to the static CMOS circuits as well as the very fast current switching taking place at the input differential pair transistors. One of the primary requirements of a current-mode logic circuit is that the current bias transistor must remain in the saturation region in order to maintain a constant current.

Ultra low power[edit]

Recently, CML has been used in ultra-low power applications. Studies show that while the leakage current in conventional static CMOS circuits is becoming a major challenge in lowering the energy dissipation, good control of CML current consumption makes them a very good candidate for extremely low power use. Called subthreshold CML or subthreshold source coupled logic (STSCL),[3][4][5] the current consumption of each gate can be reduced down to a few tens of picoamps.

See also[edit]

References[edit]

  1. ^ Serial Interface for Data Converters, JEDEC standard JESD204, April 2006
  2. ^ "Understanding DVI‐D, HDMI And DisplayPort Signals" (PDF). Archived from the original (PDF) on 2013-11-02. Retrieved 2013-10-30.
  3. ^ Tajalli, Armin; Vittoz, Eric; Brauer, Elizabeth J.; Leblebici, Yusuf. "Ultra low power subthreshold MOS current mode logic circuits using a novel load device concept". Esscirc 2007.
  4. ^ Tajalli, Armin; Leblebici, Yusuf (27 September 2010). Extreme low-power mixed signal IC design: subthreshold source-coupled circuits. Springer, New York. ISBN 978-1-4419-6477-9.
  5. ^ Reynders, Nele; Dehaene, Wim (2015). Written at Heverlee, Belgium. Ultra-Low-Voltage Design of Energy-Efficient Digital Circuits. Analog Circuits And Signal Processing (ACSP) (1 ed.). Cham, Switzerland: Springer International Publishing AG Switzerland. doi:10.1007/978-3-319-16136-5. ISBN 978-3-319-16135-8. ISSN 1872-082X. LCCN 2015935431.

External links[edit]