Cutler's bar notation

From Wikipedia, the free encyclopedia
Jump to: navigation, search

In mathematics, Cutler's bar notation is a notation system for large numbers, introduced by Mark Cutler in 2004. The idea is based on iterated exponentiation in much the same way that exponentiation is iterated multiplication.


A regular exponential can be expressed as such:

However, these expressions become arbitrarily large when dealing with systems such as Knuth's up-arrow notation. Take the following:

Cutler's bar notation shifts these exponentials counterclockwise, forming . A bar is placed above the variable to denote this change. As such:

This system becomes effective with multiple exponent, when regular denotation becomes too cumbersome.

At any time, this can be further shortened by rotating the exponential counter-clockwise once more.

The same pattern could be iterated a fourth time, becoming . For this reason, it is sometimes referred to as Cutler's circular notation.

Advantages and drawbacks[edit]

The Cutler Bar Notation can be used to easily express other notation systems in exponent form. It also allows for a flexible summarisation of multiple copies of the same exponents, where any number of stacked exponents can be shifted counter-clockwise and shortened to a single variable. The Bar Notation also allows for fairly rapid composure of very large numbers. For instance, the number would contain more than a googolplex digits, whilst remaining fairly simple to write with and remember.

However, the system reaches a problem when dealing with different exponents in a single expression. For instance, the expression could not be summarised in Bar notation. Additionally, the exponent can only be shifted thrice before it returns to its original position, making a five degree shift indistinguishable from a one degree shift. Some have suggested using a double and triple bar in subsequent rotations, though this presents problems when dealing with ten and twenty degree shifts.

See also[edit]