Cyanogen azide

From Wikipedia, the free encyclopedia
Cyanogen azide
Cyanogen azide structure.svg
Preferred IUPAC name
Carbononitridic azide[1]
Other names
Cyano azide
3D model (JSmol)
  • InChI=1S/CN4/c2-1-4-5-3
  • C(#N)N=[N+]=[N-]
Molar mass 68.039 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Cyanogen azide, N3CN or CN4, is an azide compound of carbon and nitrogen which is an oily, colourless liquid at room temperature.[2] It is a highly explosive chemical that is soluble in most organic solvents, and normally handled in dilute solution in this form.[2][3][4] It was first synthesised by F. D. Marsh at DuPont in the early 1960s.[2][5]

Cyanogen azide is a primary explosive, although it is far too unstable for practical use as an explosive and is extremely dangerous outside dilute solution.[6][7] Its use in chemistry has been as a reagent prepared in situ for use in the synthesis of chemicals such as diaminotetrazoles, either in dilute solution or as a gas at reduced pressure.[8][9][10][11][12][13][14] It can be synthesised at below room temperature from the reaction of sodium azide with either cyanogen chloride[2] or cyanogen bromide,[5] dissolved in a solvent such as acetonitrile; this reaction must be done with care due to the production from trace moisture of shock-sensitive byproducts.[5][12]


  1. ^ International Union of Pure and Applied Chemistry (2014). Nomenclature of Organic Chemistry: IUPAC Recommendations and Preferred Names 2013. The Royal Society of Chemistry. p. 799. doi:10.1039/9781849733069. ISBN 978-0-85404-182-4.
  2. ^ a b c d Marsh, F. D.; Hermes, M. E. (October 1964). "Cyanogen Azide". Journal of the American Chemical Society. 86 (20): 4506–4507. doi:10.1021/ja01074a071.
  3. ^ Goldsmith, Derek (2001). "Cyanogen azide". Encyclopedia of Reagents for Organic Synthesis. E-EROS Encyclopedia of Reagents for Organic Synthesis. doi:10.1002/047084289X.rc268. ISBN 978-0471936237.
  4. ^ Houben-Weyl Methods of Organic Chemistry Vol. E 21e, 4th Edition Supplement: Stereoselective Synthesis: Bond Formation, C-N, C-O, C-P, C-S, C-Se, C-Si, C-Sn, C-Te. Thieme. 14 May 2014. p. 5414. ISBN 978-3-13-182284-0.
  5. ^ a b c Marsh, F. D. (September 1972). "Cyanogen azide". The Journal of Organic Chemistry. 37 (19): 2966–2969. doi:10.1021/jo00984a012.
  6. ^ Robert Matyáš; Jiří Pachman (12 March 2013). Primary Explosives. Springer Science & Business Media. p. 111. ISBN 978-3-642-28436-6.
  7. ^ Michael L. Madigan (13 September 2017). First Responders Handbook: An Introduction, Second Edition. CRC Press. p. 170. ISBN 978-1-351-61207-4.
  8. ^ Gordon W. Gribble; J. Joule (3 September 2009). Progress in Heterocyclic Chemistry. Elsevier. pp. 250–1. ISBN 978-0-08-096516-1.
  9. ^ Science of Synthesis: Houben-Weyl Methods of Molecular Transformations Vol. 17: Six-Membered Hetarenes with Two Unlike or More than Two Heteroatoms and Fully Unsaturated Larger-Ring Heterocycles. Thieme. 14 May 2014. p. 2082. ISBN 978-3-13-178081-2.
  10. ^ Barry M. Trost (1991). Oxidation. Elsevier. p. 479. ISBN 978-0-08-040598-8.
  11. ^ Lowe, Derek. "Things I Won't Work With: Cyanogen Azide". Science Translational Medicine. American Association for the Advancement of Science. Retrieved 27 April 2017.
  12. ^ a b Joo, Young-Hyuk; Twamley, Brendan; Garg, Sonali; Shreeve, Jean'ne M. (4 August 2008). "Energetic Nitrogen-Rich Derivatives of 1,5-Diaminotetrazole". Angewandte Chemie International Edition. 47 (33): 6236–6239. doi:10.1002/anie.200801886. PMID 18615414.
  13. ^ Audran, Gérard; Adiche, Chiaa; Brémond, Paul; El Abed, Douniazad; Hamadouche, Mohammed; Siri, Didier; Santelli, Maurice (March 2017). "Cycloaddition of sulfonyl azides and cyanogen azide to enamines. Quantum-chemical calculations concerning the spontaneous rearrangement of the adduct into ring-contracted amidines". Tetrahedron Letters. 58 (10): 945–948. doi:10.1016/j.tetlet.2017.01.081.
  14. ^ Energetic Materials, Volume 1. Plenum Press. pp. 68–9. ISBN 9780306370762.

External links[edit]