DABCO

From Wikipedia, the free encyclopedia
Jump to: navigation, search
DABCO
Dabco-2.svg
DABCO-3D-balls.png
Names
IUPAC name
1,4-Diazabicyclo[2.2.2]octane
Other names
Triethylenediamine, TEDA
Identifiers
280-57-9 YesY
3D model (Jmol) Interactive image
Interactive image
ChemSpider 8882 YesY
ECHA InfoCard 100.005.455
2577
PubChem 9237
Properties
C6H12N2
Molar mass 112.18 g·mol−1
Appearance White crystalline powder
Melting point 156 to 160 °C (313 to 320 °F; 429 to 433 K)
Boiling point 174 °C (345 °F; 447 K)
Soluble, hygroscopic
Acidity (pKa) 3.0, 8.8 (in water)[1]
Hazards
Main hazards Harmful
H228, H302, H315, H319, H335, H412
P210, P261, P273, P305 + P351 + P338
R-phrases R11, R22, R36/37/38, R52/53
S-phrases S26, S60
NFPA 704
Flammability code 2: Must be moderately heated or exposed to relatively high ambient temperature before ignition can occur. Flash point between 38 and 93 °C (100 and 200 °F). E.g., diesel fuel Health code 2: Intense or continued but not chronic exposure could cause temporary incapacitation or possible residual injury. E.g., chloroform Reactivity code 1: Normally stable, but can become unstable at elevated temperatures and pressures. E.g., calcium Special hazards (white): no codeNFPA 704 four-colored diamond
Flash point 62 °C (144 °F; 335 K)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
YesY verify (what is YesYN ?)
Infobox references

DABCO (1,4-diazabicyclo[2.2.2]octane) is an organic compound with the formula N2(C2H4)3. This colorless solid is a highly nucleophilic amine, which is used as a catalyst and reagent in polymerization and organic synthesis.[3]

Quinuclidine has a similar structure, with one of the nitrogen atoms replaced by a carbon atom.

Reactions and applications[edit]

The pKa of [HDABCO]+ (the protonated derivative) is 8.8, which is almost the same as ordinary alkylamines. The nucleophilicity of the amine is high because the amine centers are unhindered. It is sufficiently basic to promote C-C coupling of terminal acetylenes, for example, phenylacetylene couples with electron-deficient iodoarenes.

Example of a DABCO-catalysed C-C coupling

Catalyst[edit]

DABCO is used as a base-catalyst for:

The scheme of Baylis Hilman reaction.

Lewis base[edit]

As an unhindered amine, it is a strong ligand and Lewis base. It forms a crystalline 2:1 adduct with hydrogen peroxide[6] and sulfur dioxide.[7]

Ionic monomer synthesis[edit]

DABCO can be used to synthesize doubly-charged styrenic monomers. These ionic mononmers allow synthesis of polyelectrolytes and ionomers with two cyclic quaternary ammonium cations on each ionic pendant group. [8]

Quencher of singlet oxygen[edit]

DABCO and related amines are quenchers of singlet oxygen and effective antioxidants,[9] and can be used to improve the lifetime of dyes. This makes DABCO useful in dye lasers and in mounting samples for fluorescence microscopy (when used with glycerol and PBS).[10] DABCO can also be used to demethylate quaternary ammonium salts by heating in dimethylformamide (DMF).[11]

Production[edit]

It is produced by thermal reactions of compounds of the type H2NCH2CH2X (X = OH, NH2, or NHR) in the presence of zeolitic catalysts. An idealized conversion is shown for the conversion from ethanolamine:[12]

3 H2NCH2CH2OH → N(CH2CH2)3N + NH3 + 3 H2O

References[edit]

  1. ^ D. H. Ripin; D. A. Evans (2002). "pKa's of Nitrogen Acids" (PDF). 
  2. ^ "Safety data for 1,4-diazabicyclo[2.2.2]octane (see MSDS)". Sigma-Aldrich. 
  3. ^ Uppuluri V. Mallavadhani, Nicolas Fleury-Bregeot. "1,4-Diazabicyclo [2.2.2]octane". In Encyclopedia of Reagents for Organic Synthesis, 2010, John Wiley & Sons, Ltd. doi:10.1002/047084289X.rd010m.pub2
  4. ^ "Polyurethane additives guide" (PDF). Air Products & Chemicals. 
  5. ^ Baylis, A. B.; Hillman, M. E. D. German Patent 2155113, 1972.
  6. ^ P. Dembech, A. Ricci, G. Seconi, and M. Taddei "Bis(trimethylsilyl) Peroxide" Org. Synth. 1997, volume 74, pp. 84. doi:10.15227/orgsyn.074.0084
  7. ^ Ludovic Martial and Laurent Bischoff "Preparation of DABSO from Karl-Fischer Reagent" Org. Synth. 2013, volume 90, pp. 301. doi:10.15227/orgsyn.090.0301
  8. ^ Zhang, K.; Drummey, K. J.; Moon, N. G.; Chiang, W. D.; Long, T. E. (2016). "Styrenic DABCO salt-containing monomers for the synthesis of novel charged polymers". Polymer Chemistry. 7 (20): 3370-3374. doi:10.1039/C6PY00426A. 
  9. ^ Ouannes, C.; Wilson, T. (1968). "Quenching of singlet oxygen by tertiary aliphatic amines. Effect of DABCO (1,4-diazabicyclo[2.2.2]octane)". Journal of the American Chemical Society. 90 (23): 6527–6528. doi:10.1021/ja01025a059. 
  10. ^ Valnes, K.; Brandtzaeg, P. (1985). "Retardation of immunofluorescence fading during microscopy" (pdf). Journal of Histochemistry and Cytochemistry. 33 (8): 755–761. PMID 3926864. 
  11. ^ Ho, T. L. (1972). "Dealkylation of Quaternary Ammonium Salts with 1,4-Diazabicyclo[2.2.2]octane". Synthesis. 1972 (12): 702. doi:10.1055/s-1972-21977. 
  12. ^ Karsten Eller, Erhard Henkes, Roland Rossbacher, Hartmut Höke "Amines, Aliphatic" in Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, 2005. doi:10.1002/14356007.a02_001

Further reading[edit]

  • Cecchi, L.; DeSarlo, F.; Machetti, F. (2006). "1,4-Diazabicyclo[2.2.2]octane (DABCO) as an Efficient Reagent for the Synthesis of Isoxazole Derivatives from Primary Nitro Compounds and Dipolarophiles: The Role of the Base". European Journal of Organic Chemistry. 2006 (21): 4852–4860. doi:10.1002/ejoc.200600475. .