DNA separation by silica adsorption

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search

DNA separation by silica adsorption is a method of DNA separation that is based on DNA molecules binding to silica surfaces in the presence of certain salts and under certain pH conditions, usually conducted on a microchip coated in silica channels.[1][2]


Conventional methods for DNA extraction, such as ethanol precipitation or preparations using commercial purification kits, cannot be integrated onto microchips because they require multiple hands-on processing steps. In addition, they also require large equipment and high volumes of reagents and samples. Silica resins avoid these issues through integration on microchips, where solid phase extraction provides accurate analysis of DNA on a small scale.[3]


In order to conduct DNA separation by silica adsorption, a sample (this may be anything from purified cells to a tissue specimen) is placed onto a specialized chip and lysed. The resultant mix of proteins, DNA, phospholipids, etc., is then run through the channel where the DNA is adsorbed by a silica surface in the presence of solutions with high ionic strength. The highest DNA adsorption efficiencies occur in the presence of buffer solution with a pH at or below the pKa of the surface silanol groups.

The mechanism behind DNA adsorption onto silica is not fully understood; one possible explanation involves reduction of the silica surface's negative charge due to the high ionic strength of the buffer. This decrease in surface charge leads to a decrease in the electrostatic repulsion between the negatively charged DNA and the negatively charged silica. Meanwhile, the buffer also reduces the activity of water by formatting hydrated ions. This leads to the silica surface and DNA becoming dehydrated. These conditions lead to an energetically favorable situation for DNA to adsorb to the silica surface.[citation needed]

A further explanation of how DNA binds to silica is based on the action of guanidinium HCl (GuHCl), which acts as a chaotrope. A chaotrope denatures biomolecules by disrupting the shell of hydration around them. This allows positively charged ions to form a salt bridge between the negatively charged silica and the negatively charged DNA backbone in high salt concentration. The DNA can then be washed with high salt and ethanol, and ultimately eluted with low salt.

After the DNA is adsorbed to the silica surface, all other molecules pass through the column. Most likely, these molecules are sent to a waste section on the chip, which can then be closed off using a gated channel or a pressure- or voltage-controlled chamber. The DNA is then washed to remove any excess waste particles from the sample and then eluted from the channel using an elution buffer for further downstream processing.[citation needed]

The following solutions have been proposed and validated for use in this process DNA binding: GuHCl- based loading buffer; Channel Wash: 80% isopropanol; DNA elution: TE at pH 8.4.[citation needed]

Silicon micro DNA extraction surfaces[edit]

Methods using silica beads and silica resins have been created that can isolate DNA molecules for subsequent PCR amplification. However, these methods have associated problems. First, beads and resins are highly variable depending on how well they are packed and are thus hard to reproduce. Each loading of a micro-channel can result in a different amount of packing and thus change the amount of DNA that adsorbed to the channel. Furthermore, these methods result in a two step manufacturing process.

Silica structures are a much more effective method of packing material because they are etched into the channel during its fabrication and is thus the result of a one step manufacturing processes via soft lithography. Silica structures are therefore easier to use in highly parallelized designs than beads or resins.

See also[edit]


  1. ^ Liu, Lingling; Guo, Zilong; Huang, Zhenzhen; Zhuang, Jiaqi; Yang, Wensheng (25 February 2016). "Size-fselective separation of DNA fragments by using lysine-functionalized silica particles". Scientific Reports. 6: 22029. Bibcode:2016NatSR...622029L. doi:10.1038/srep22029. PMC 4766563. PMID 26911527.
  2. ^ Karp, Angela; Isaac, Peter G.; Ingram, David S. (1998). "Isolation of Nucleic Acids Using Silica-Gel Based Membranes: Methods Based on the Use of QIAamp Spin Columns". Molecular Tools for Screening Biodiversity: 59–63. doi:10.1007/978-94-009-0019-6_14. ISBN 978-94-010-6496-5.
  3. ^ Tian, H; Hühmer, AF; Landers, JP (August 2000). "Evaluation of silica resins for direct and efficient extraction of DNA from complex biological matrices in a miniaturized format". Analytical Biochemistry. 283 (2): 175–191. doi:10.1006/abio.2000.4577. PMID 10906238. S2CID 35971689.
  • Cady, et al. Nucleic acid purification using microfabricated silicon structures. Biosensors and Bioelectronics, 19, 59-66 (2003).
  • K. A. Melzak, C. S. Sherwood, R. F. B. Turner, C. A. Haynes. Driving Forces for DNA Adsorption to Silica in Perchlorate Solutions. Journal of Colloid and Interface Science, 181, 635–644 (1996).
  • Wolfe, et al. Toward a microchip-based solid-phase extraction method for isolation of nucleic acids. Electrophoresis, 23, 727-733 (2002).