Data processing inequality
The Data processing inequality is an information theoretic concept which states that the information content of a signal cannot be increased via a local physical operation. This can be expressed concisely as 'post-processing cannot increase information'.[1]
Definition[edit]
Let three random variables form the Markov chain , implying that the conditional distribution of depends only on and is conditionally independent of . Specifically, we have such a Markov chain if the joint probability mass function can be written as
In this setting, no processing of Y , deterministic or random, can increase the information that Y contains about X. Using the mutual information, this can be written as :
With the equality if and only if , i.e. and contain the same information about , and also forms a Markov chain.[2]
See also[edit]
References[edit]
External links[edit]
![]() | This computer science article is a stub. You can help Wikipedia by expanding it. |