Debaryomyces hansenii

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search

Debaryomyces hansenii
Scientific classification
Kingdom:
Division:
Class:
Order:
Family:
Genus:
Species:
D. hansenii
Binomial name
Debaryomyces hansenii
(Zopf) Lodder & Kreger-van Rij (1984)
Synonyms
  • Saccharomyces hansenii Zopf (1889)

Debaryomyces hansenii is a species of yeast in the family Saccharomycetaceae.

Ecology[edit]

Debaryomyces hansenii is an osmo-, halo-, xerotolerant, and non-pathogenic yeast[1] that produces toxins, including mycocins, to destroy competitive yeast species.[2] It is a common species in all types of cheese, including soft cheeses and the brines of semi-hard and hard cheeses,[3] and the most common yeast among 383 isolates from samples of unsulphited or sulphited sausages, skinless sausages and minced beef.[4] It contributes to the fermentation of barrel-aged beers such as Le Coq Imperial Stout from Harveys Brewery in southern England. Harvey's head brewer speculates that it is either airborne in the brewery or a slow-growing component of their house yeast blend.[5] D. hansenii is also found in hyper-saline waters such as the salterns on the Atlantic coast of Namibia or in the Great Salt Lake of Utah.[1]

Nutritional requirements[edit]

The species can be cultivated in media with up to 25% NaCl or 18% glycerol.[1] Growth rate increases in solutions with ≥ 1M NaCl or KCl, with sodium and potassium ions playing a very important role in the mechanisms involved in maintaining osmobalance. The species can survive a pH range between 3 and 10.

Reproduction[edit]

Most strains are haploid, mating very rarely and diploidize transiently by somatogamous autogamy (i.e. fusion of two cells but excluding their nuclei). Sexual reproduction proceeds via heterogamous conjugation (i.e. the conjugation of two cells of different form or size) leading to short diplophase followed by meiosis and ascospore formation.[1] Haploid yeasts reproduce vegetatively by multilateral budding.

Differentiation[edit]

The ability of this species to grow at 10% NaCl or 5% glucose is used to discriminate D. hansenii from other ascomycetous yeasts.[1] The species comprises two varieties: D. hansenii var. hansenii and var. fabryii. These two groups can be differentiated via rRNA, the electrophoretic mobility of their glucose-6-phosphate dehydrogenase, or by their maximum grow temperatures (35 °C for var. hansenii and 39 °C for var. fabryii).

Biotechnology[edit]

The species has been demonstrated to synthesize useful quantities of D-arabinitol, riboflavin, xylitol, and pyruvic acid under thiamine limitation.[1] The species has also been used to decarboxylate Ferulic acid to 2-Methoxy-4-vinylphenol via biotransformation (a 95.07% yield, 1470.8 mg/l, within 10 hours).[6]

References[edit]

  1. ^ a b c d e f Uta Breuer; Hauke Harms (2006). "Debaryomyces hansenii — an extremophilic yeast with biotechnological potential". Yeast. 23 (6): 415–437. doi:10.1002/yea.1374. PMID 16652409.
  2. ^ Nabaraj Banjaraa; Kenneth W. Nickersonb; Mallory J. Suhra; Heather E. Hallen-Adamsa (2016). "Killer toxin from several food-derived Debaryomyces hansenii strains effective against pathogenic Candida yeasts". International Journal of Food Microbiology. 222 (2): 23–29. doi:10.1016/j.ijfoodmicro.2016.01.016.
  3. ^ Fleet, G.H. (1990). "Yeasts in dairy products". Journal of Applied Bacteriology. 68 (3): 199–211. doi:10.1111/j.1365-2672.1990.tb02566.x.
  4. ^ Hilary K. Dalton; R. G. Board; R. R. Davenport (1984). "The yeasts of British fresh sausage and minced beef". Antonie van Leeuwenhoek. 50 (3): 227–248. doi:10.1007/BF02342134.
  5. ^ Jackson, Michael (6 April 2001), Washington hosts historic tasting of British and Irish classics
  6. ^ Sindhu Mathewa; Emilia Abrahama; S. Sudheesh (2007). "Rapid conversion of ferulic acid to 4-vinyl guaiacol and vanillin metabolites by Debaryomyces hansenii". Journal of Molecular Catalysis B: Enzymatic. 44 (2): 48–52. doi:10.1016/j.molcatb.2006.09.001.

External links[edit]