Diagonal lemma

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search

In mathematical logic, the diagonal lemma (also known as diagonalization lemma, self-reference lemma[1] or fixed point theorem) establishes the existence of self-referential sentences in certain formal theories of the natural numbers—specifically those theories that are strong enough to represent all computable functions. The sentences whose existence is secured by the diagonal lemma can then, in turn, be used to prove fundamental limitative results such as Gödel's incompleteness theorems and Tarski's undefinability theorem.[2]

Background[edit]

Let be the set of natural numbers. A first-order theory in the language of arithmetic represents[3] the computable function if there exists a "graph" predicate in the language of such that for each

Here is the numeral corresponding to the natural number , which is defined to be the th successor of presumed first numeral in .

The diagonal lemma also requires a systematic way of assigning to every formula a natural number (also written as ) called its Gödel number. Formulas can then be represented within by the numerals corresponding to their Gödel numbers. For example, is represented by

The diagonal lemma applies to theories capable of representing all primitive recursive functions. Such theories include first-order Peano arithmetic and the weaker Robinson arithmetic, and even to a much weaker theory known as R. A common statement of the lemma (as given below) makes the stronger assumption that the theory can represent all computable functions, but all the theories mentioned have that capacity, as well.

Statement of the lemma[edit]

Lemma[4] — Let be a first-order theory in the language of arithmetic and capable of representing all computable functions, and be a formula in with one free variable. Then there exists a formula such that

Intuitively, is a self-referential formula: says that has the property . The sentence can also be viewed as a fixed point of the operation assigning to each formula the formula . The formula constructed in the proof is not literally the same as , but is provably equivalent to it in the theory .

Proof[edit]

Let be the function defined by:

for each formula with only one free variable in theory , and otherwise. Here denotes the Gödel number of formula . The function is computable (which is ultimately an assumption about the Gödel numbering scheme), so there is a formula representing in . Namely

which is to say

Now, given an arbitrary formula with one free variable , define the formula as:

Then, for all formulas with one free variable:

which is to say

Now substitute with , and define the formula as:

Then the previous line can be rewritten as

which is the desired result.

(The same argument in different terms is given in [Raatikainen (2015a)].)

History[edit]

The lemma is called "diagonal" because it bears some resemblance to Cantor's diagonal argument.[5] The terms "diagonal lemma" or "fixed point" do not appear in Kurt Gödel's 1931 article or in Alfred Tarski's 1936 article.

Rudolf Carnap (1934) was the first to prove the general self-referential lemma,[6] which says that for any formula F in a theory T satisfying certain conditions, there exists a formula ψ such that ψ ↔ F(°#(ψ)) is provable in T. Carnap's work was phrased in alternate language, as the concept of computable functions was not yet developed in 1934. Mendelson (1997, p. 204) believes that Carnap was the first to state that something like the diagonal lemma was implicit in Gödel's reasoning. Gödel was aware of Carnap's work by 1937.[7]

The diagonal lemma is closely related to Kleene's recursion theorem in computability theory, and their respective proofs are similar.

See also[edit]

Notes[edit]

  1. ^ Hájek, Petr; Pudlák, Pavel (1998) [first printing 1993]. Metamathematics of First-Order Arithmetic. Perspectives in Mathematical Logic (1st ed.). Springer. ISBN 3-540-63648-X. ISSN 0172-6641. In modern texts these results are proved using the well-known diagonalization (or self-reference) lemma, which is already implicit in Gödel's proof.
  2. ^ See Boolos and Jeffrey (2002, sec. 15) and Mendelson (1997, Prop. 3.37 and Cor. 3.44 ).
  3. ^ For details on representability, see Hinman 2005, p. 316
  4. ^ Smullyan (1991, 1994) are standard specialized references. The lemma is Prop. 3.34 in Mendelson (1997), and is covered in many texts on basic mathematical logic, such as Boolos and Jeffrey (1989, sec. 15) and Hinman (2005).
  5. ^ See, for example, Gaifman (2006).
  6. ^ Kurt Gödel, Collected Works, Volume I: Publications 1929–1936, Oxford University Press, 1986, p. 339.
  7. ^ See Gödel's Collected Works, Vol. 1, Oxford University Press, 1986, p. 363, fn 23.

References[edit]