Diamond Light Source

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search
Diamond Light Source
DiamondLogo.png
Diamond Light Source building - 3338870 ff7a8854.jpg
Diamond Light Source building
Formation~2001
HeadquartersChilton, Oxfordshire, United Kingdom
LeaderProfessor Andrew Harrison
Websitediamond.ac.uk

Diamond Light Source (or Diamond) is the UK's national synchrotron light source science facility located at the Harwell Science and Innovation Campus in Oxfordshire. Its purpose is to produce intense beams of light whose special characteristics are useful in many areas of scientific research. In particular it can be used to investigate the structure and properties of a wide range of materials from proteins (to provide information for designing new and better drugs), and engineering components (such as a fan blade from an aero-engine[1]) to conservation of archeological artifacts (for example Henry VIII's flagship the Mary Rose[2][3]).

There are more than 50 light sources across the world.[4] With an energy of 3 GeV, Diamond is a medium energy synchrotron currently operating with 32 beamlines.

Design, construction and finance[edit]

Diamond Light Source in snow, 2018.

The Diamond synchrotron is the largest UK-funded scientific facility to be built in the UK since the Nimrod proton synchrotron which was sited at the Rutherford Appleton Laboratory in 1964. Nearby facilities include the ISIS Neutron and Muon Source, the Central Laser Facility, and the laboratories at Harwell and Culham (including the Joint European Torus (JET) project). It replaced the second-generation synchrotron which was at the Daresbury Laboratory in Cheshire.

Diamond produced its first user beam towards the end of January 2007, and was formally opened by Queen Elizabeth II on 19 October 2007.[5][6]

Construction[edit]

A design study during the 1990s was completed in 2001 by scientists at Daresbury and construction began following the creation of the operating company, Diamond Light Source Ltd.[7]

The construction costs of £260m covered the synchrotron building, the accelerators inside it, the first seven experimental stations (beamlines) and the adjacent office block, Diamond House.

Governance[edit]

The facility is operated by Diamond Light Source Ltd,[8] a joint venture company established in March 2002. The company receives 86% of its funding from the UK Government via the Science and Technology Facilities Council (STFC) and 14% from the Wellcome Trust.

Synchrotron[edit]

Inside the experimental hall

Diamond generates synchrotron light at wavelengths ranging from X-rays to the far infrared. This is also known as synchrotron radiation and is the electromagnetic radiation emitted by charged particles travelling near the speed of light when their path deviates from a straight line.[9] It is used in a huge variety of experiments to study the structure and behaviour of many different types of matter.

The particles Diamond uses are electrons travelling at an energy of 3 GeV[10] round a 561.6 m circumference storage ring. This is not a true circle, but a 48-sided polygon with a bending magnet at each vertex and straight sections in between.[11] The bending magnets are dipole magnets whose magnetic field deflects the electrons so as to steer them around the ring. As Diamond is a third generation light source[further explanation needed] it also uses special arrays of magnets called insertion devices. These cause the electrons to undulate and it is their sudden change of direction that causes the electrons to emit an exceptionally bright beam of electromagnetic radiation, brighter than that of a single bend when traveling through a bending magnet. This is the synchrotron light used for experiments. Some beamlines, however, use light solely from a bending magnet without the need of an insertion device.

The electrons reach this high energy via a series of pre-accelerator stages before being injected into the 3 GeV storage ring:

The Diamond synchrotron is housed in a silver toroidal building of 738 m in circumference, covering an area in excess of 43,300 square metres, or the area of over six football pitches. This contains the storage ring and a number of beamlines,[12] with the linear accelerator and booster synchrotron housed in the centre of the ring. These beamlines are the experimental stations where the synchrotron light's interaction with matter is used for research purposes. Seven beamlines were available when Diamond became operational in 2007, with more coming online as construction continued. As of April 2019 there were 32 beamlines in operation. Diamond is intended ultimately to host about 33 beamlines, supporting the life, physical and environmental sciences.

Diamond is also home to eleven electron microscopes. Nine of these are cryo-electron microscopes specialising in life sciences including two provided for industry use in partnership with Thermo Fisher Scientific; the remaining two microscopes are dedicated to research of advanced materials.[13]

Case studies[edit]

  • In September 2007, scientists from Cardiff University led by Tim Wess, found that the Diamond synchrotron could be used to see hidden content of ancient documents by illumination without opening them (penetrating layers of parchment).[14][15]
  • In November 2010 data collected at Diamond by Imperial College London formed the basis for a paper in the journal Nature advancing the understanding of how HIV and other retroviruses infect human and animal cells.[16][17] The findings may enable improvements in gene therapy to correct gene malfunctions.
  • In June 2011 data from Diamond led to an article in the journal Nature detailing the 3D structure of the human Histamine H1 receptor protein. This led to the development of 'third generation' anti-histamines, drugs effective against some allergies without adverse side-effects.[18][19]
  • Published in the Proceedings of the National Academy of Sciences in April 2018, a five institution collaboration including scientists from Diamond used three of Diamond's macromolecular beamlines to discover details of how a bacterium used plastic as an energy source. High resolution data allowed the researchers to determine the workings of an enzyme that griped the plastic PET. Subsequently computational modelling was carried out to investigate and thus improve this mechanism.[20]
  • An article published in Nature in 2019 described how a worldwide multidisciplinary collaboration designed several ways to control metal nano-particles, including synthesis at a substantially reduced cost for use as catalysts for the production of everyday goods.[21]
  • Research conducted at Diamond Light Source in 2020 helped determine the atomic structure of SARS‑CoV‑2, the virus responsible for COVID-19.[22]

See also[edit]

References[edit]

  1. ^ Diamond and Rolls-Royce shine light on world’s biggest synchrotron stage
  2. ^ High-tech conservation solutions for old warship – Diamond Lights Source
  3. ^ Podcast – Dr Mark Jones from The Mary Rose Trust discusses his research
  4. ^ "Lightsources.org: Light Sources of the World". 2019. Retrieved 2019-10-05.
  5. ^ Diamond News: Her Majesty The Queen Officially Opens Diamond Light Source
  6. ^ "'Super-scope' opens for business". 2007-02-05.
  7. ^ The name DIAMOND was originally conceived by Mike Poole (the originator of the DIAMOND project) and stood as an acronym meaning DIpole And Multipole Output for the Nation at Daresbury. With the location now being Oxfordshire, not Daresbury, the name reflects the synchrotron light being both hard (referring to the "hard" X-ray region of the electromagnetic spectrum) and bright.
  8. ^ Diamond Light Source Ltd Archived 2013-07-07 at the Wayback Machine
  9. ^ Strictly speaking, when they experience an acceleration perpendicular to their direction of travel.
  10. ^ Equivalent to accelerating them through a voltage of 3 billion volts; 1 electronvolt is the energy an electron gains when accelerated by a potential difference of 1 volt.
  11. ^ "Inside Diamond" (PDF). Diamond Light Source. 2015. Retrieved 5 Oct 2019.
  12. ^ "Current list of Diamond Beamlines". Archived from the original on 2016-02-02. Retrieved 2011-08-09.
  13. ^ "Beamline Development and Technical Summary - Diamond Light Source". www.diamond.ac.uk. Retrieved 2019-10-05.
  14. ^ "'Super-scope' to see hidden texts". 2007-09-13.
  15. ^ "Diamond: Unravelling the secrets of ancient parchments". Archived from the original on 2011-08-08. Retrieved 2011-08-09.
  16. ^ Diamond News: X-rays illuminate the mechanism used by HIV to attack human DNA
  17. ^ Maertens, Goedele N.; Hare, Stephen; Cherepanov, Peter (2010). "The mechanism of retroviral integration from X-ray structures of its key intermediates". Nature. 468 (7321): 326–329. Bibcode:2010Natur.468..326M. doi:10.1038/nature09517. PMC 2999894. PMID 21068843.
  18. ^ Diamond News: Histamine H1 receptor breakthrough heralds improved allergy treatments
  19. ^ Shimamura, Tatsuro (2011). "Structure of the human histamine H1 receptor complex with doxepin". Nature. 475 (7354): 65–70. doi:10.1038/nature10236. PMC 3131495. PMID 21697825.
  20. ^ Diamond Light Source. "Solution to plastic pollution on the horizon - Diamond Light Source". www.diamond.ac.uk. Retrieved 2019-10-05.
  21. ^ "Worldwide scientific collaboration develops catalysis breakthrough - Diamond Light Source". www.diamond.ac.uk. Retrieved 2019-10-05.
  22. ^ "Synchrotrons on the coronavirus frontline". 2020. Retrieved 2021-07-03.

External links[edit]

Coordinates: 51°34′28″N 1°18′39″W / 51.57444°N 1.31083°W / 51.57444; -1.31083