Diatomic carbon

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search
Diatomic carbon
Dicarbon.svg
Names
IUPAC name
Diatomic carbon
Systematic IUPAC name
Ethenediylidene (substitutive)
Dicarbon(CC) (additive)
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
196
Properties
C2
Molar mass 24.02 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Infobox references

Diatomic carbon (systematically named dicarbon and 2,2λ2-ethene, is a green, gaseous inorganic chemical with the chemical formula C=C (also written [C
2
]
or C
2
). It is kinetically unstable at ambient temperature and pressure, being removed through autopolymerisation. It occurs in carbon vapor, for example in electric arcs; in comets, stellar atmospheres and the interstellar medium; and in blue hydrocarbon flames.[1] Diatomic carbon is the second simplest form of carbon after atomic carbon, and is an intermediate participator in the genesis of fullerenes.

Properties[edit]

C2 is a component of carbon vapor. One paper estimates that carbon vapor is around 28% diatomic,[2] but theoretically this depends on the temperature and pressure.

Electromagnetic properties[edit]

The electrons in diatomic carbon are distributed among the atomic orbitals according to the aufbau principle to produce unique quantum states, with corresponding energy levels. The state with the lowest energy level, or ground state, is a singlet state (1Σ+
g
), which is systematically named ethene-1,2-diylidene or dicarbon(0•). There are several excited singlet and triplet states that are relatively close in energy to the ground state, which form significant proportions of a sample of dicarbon under ambient conditions. When most of these excited states undergo photochemical relaxation, they emmit in the infrared region of the electromagnetic spectrum. However, one state in particular emmits in the green region. That state is a triplet state (3Πg), which is systematically named ethene-μ,μ-diyl-μ-ylidene or dicarbon(2•). In addition, there is an excited state somewhat further in energy from the ground state, which only form a significant proportion of a sample of dicarbon under mid-ultraviolet irradiation. Upon relaxation, this excited state fluoresces in the violet region and phosphoresces in the blue region. This state is also a singlet state (1Πg), which is also named ethene-μ,μ-diyl-μ-ylidene or dicarbon(2•).

State Excitation
enthalpy
(kJ mol−1)
Relaxation
transition
Relaxation
wavelength
Relaxation EM-region
X1Σ+
g
0
a3Π
u
8.5 a3Π
u
X1Σ+
g
14.0 μm Long-wavelength infrared
b3Σ
g
77.0 b3Σ
g
a3Π
u
1.7 μm Short-wavelength infrared
A1Π
u
100.4 A1Π
u
X1Σ+
g

A1Π
u
b3Σ
g
1.2 μm
5.1 μm
Near infrared
Mid-wavelength infrared
B1Σ+
g
? B1Σ+
g
A1Π
u

B1Σ+
g
a3Π
u
?
?
?
?
c3Σ+
u
159.3 c3Σ+
u
b3Σ
g

c3Σ+
u
X1Σ+
g

c3Σ+
u
B1Σ+
g
1.5 μm
751.0 nm
?
Short-wavelength infrared
Near infrared
?
d3Π
g
239.5 d3Π
g
a3Π
u

d3Π
g
c3Σ+
u

d3Π
g
A1Π
u
518.0 nm
1.5 μm
860.0 nm
Green
Short-wavelength infrared
Near infrared
C1Π
g
409.9 C1Π
g
A1Π
u

C1Π
g
a3Π
u

C1Π
g
c3Σ+
u
386.6 nm
298.0 nm
477.4 nm
Violet
Mid-ultraviolet
Blue

Molecular orbital theory shows that there are two sets of paired electrons in a degenerate pi bonding set of orbitals. This gives a bond order of 2, meaning that there should exist a double bond between the two carbons in a C2 molecule.[3] One analysis suggests instead that a quadruple bond exists,[4] an interpretation that was disputed.[5]

CASSCF calculations indicate that the quadruple bond based on molecular orbital theory is also reasonable.[3]

Bond dissociation energies of B2, C2, and N2 show increasing BDE, indicating single, double, and triple bonds, respectively.

In certain forms of crystalline carbon, such as diamond and graphite, a saddle point or “hump” occurs at the bond site in the charge density. The triplet state of C2 does follow this trend. However, the singlet state of C2 acts more like silicon or germanium; that is, the charge density has a maximum at the bond site.[6]

Reactions[edit]

Diatomic carbon will react with acetone and acetaldehyde to produce acetylene by two different pathways.[2]

  • Triplet C2 molecules will react through an intermolecular pathway, which is shown to exhibit radical character. The intermediate for this pathway is the ethylene radical. Its abstraction is correlated with bond energies.[2]
  • Singlet C2 molecules will react through an intramolecular, nonradical pathway in which two hydrogen atoms will be taken away from one molecule. The intermediate for this pathway is singlet vinylidene. The singlet reaction can happen through a 1,1-diabstraction or a 1,2-diabstraction. This reaction is insensitive to isotope substitution. The different abstractions are possibly due to the spatial orientations of the collisions rather than the bond energies.[2]
  • Singlet C2 will also react with alkenes. Acetylene is a major product; however, it appears C2 will insert into carbon-hydrogen bonds.
  • C2 is 2.5 times more likely to insert into a methyl group as into methylene groups.[7]

History[edit]

C/2014 Q2 (Lovejoy) glows green due to diatomic carbon.

The light of fainter comets mainly originates from the emission of diatomic carbon. An example is C/2014 Q2 (Lovejoy), where there are several lines of C2 light, mostly in the visible spectrum, forming the Swan bands.[8]

See also[edit]

  • Acetylide - a related chemical with the formula C22−

References[edit]

  1. ^ Hoffmann, Roald (1995). "Marginalia: C2 In All Its Guises" (PDF). American Scientist. 83 (4): 309–311. Bibcode:1995AmSci..83..309H. JSTOR 29775475.
  2. ^ a b c d Skell, Philip S.; Plonka, James H. (1970). "Chemistry of the singlet and triplet C2 molecules. Mechanism of acetylene formation from reaction with acetone and acetaldehyde". Journal of the American Chemical Society. 92 (19): 5620–5624. doi:10.1021/ja00722a014.
  3. ^ a b Zhong, Ronglin; Zhang, Min; Xu, Hongliang; Su, Zhongmin (2016). "Latent harmony in dicarbon between VB and MO theories through orthogonal hybridization of 3σg and 2σu". Chemical Science. 7: 1028–1032. doi:10.1039/c5sc03437j.
  4. ^ Shaik, Sason; Danovich, David; Wu, Wei; Su, Peifeng; Rzepa, Henry S.; Hiberty, Philippe C. (2012). "Quadruple bonding in C2 and analogous eight-valence electron species". Nature Chemistry. 4 (3): 195–200. Bibcode:2012NatCh...4..195S. doi:10.1038/nchem.1263.
  5. ^ Grunenberg, Jörg (2012). "Quantum chemistry: Quadruply bonded carbon". Nature Chemistry. 4 (3): 154–155. Bibcode:2012NatCh...4..154G. doi:10.1038/nchem.1274.
  6. ^ Chelikowsky, James R.; Troullier, N.; Wu, K.; Saad, Y. (1994). "Higher-order finite-difference pseudopotential method: An application to diatomic molecules". Physical Review B. 50: 11356–11364. Bibcode:1994PhRvB..5011355C. doi:10.1103/PhysRevB.50.11355.
  7. ^ Skell, P. S.; Fagone, F. A.; Klabunde, K. J. (1972). "Reaction of Diatomic Carbon with Alkanes and Ethers/ Trapping of Alkylcarbenes by Vinylidene". Journal of the American Chemical Society. 94 (22): 7862–7866. doi:10.1021/ja00777a032.
  8. ^ Mikuz, Herman; Dintinjana, Bojan (1994). "CCD Photometry of Comets". International Comet Quarterly. Retrieved October 26, 2006.