Diisopropylamine

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search
Diisopropylamine
Skeletal formula of diisopropylamine
Names
Preferred IUPAC name
N-(Propan-2-yl)propan-2-amine
Other names
Di(propan-2-yl)amine
N-Isopropylpropan-2-amine
(Diisopropyl)amine
(The name diisopropylamine is deprecated.)
Identifiers
3D model (JSmol)
Abbreviations DIPA
605284
ChemSpider
ECHA InfoCard 100.003.235
EC Number
  • 203-558-5
RTECS number
  • IM4025000
UNII
UN number 1158
Properties
C6H15N
Molar mass 101.193 g·mol−1
Appearance Colorless liquid
Odor Fishy, ammoniacal
Density 0.722 g mL−1
Melting point −61.00 °C; −77.80 °F; 212.15 K
Boiling point 83 to 85 °C; 181 to 185 °F; 356 to 358 K
miscible[1]
Vapor pressure 9.3 kPa (at 20 °C)[2]
Acidity (pKa) 11.07 (in water) (conjugate acid)
Basicity (pKb) 3.43[3]
1.392–1.393
Thermochemistry
−173.6 to −168.4 kJ mol−1
−4.3363 to −4.3313 MJ mol−1
Hazards
GHS pictograms GHS02: Flammable GHS05: Corrosive GHS07: Harmful
GHS Signal word Danger
H225, H302, H314, H332
P210, P280, P305+351+338, P310
NFPA 704 (fire diamond)
Flammability code 3: Liquids and solids that can be ignited under almost all ambient temperature conditions. Flash point between 23 and 38 °C (73 and 100 °F). E.g. gasolineHealth code 2: Intense or continued but not chronic exposure could cause temporary incapacitation or possible residual injury. E.g. chloroformReactivity code 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no codeNFPA 704 four-colored diamond
3
2
0
Flash point −17 °C (1 °F; 256 K)
315 °C (599 °F; 588 K)
Explosive limits 1.1–7.1%[1]
Lethal dose or concentration (LD, LC):
  • 770 mg kg−1 (oral, rat)
  • >10 g kg−1 (dermal, rabbit)
1140 ppm (rat, 2 hr)
1000 ppm (mouse, 2 hr)[4]
2207 ppm (rabbit, 2.5 hr)
2207 ppm (guinea pig, 80 min)
2207 ppm (cat, 72 min)[4]
NIOSH (US health exposure limits):
PEL (Permissible)
TWA 5 ppm (20 mg/m3) [skin][1]
REL (Recommended)
TWA 5 ppm (20 mg/m3) [skin][1]
IDLH (Immediate danger)
200 ppm[1]
Related compounds
Related amines
Related compounds
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is ☑Y☒N ?)
Infobox references

Diisopropylamine is a secondary amine with the chemical formula (CH3)2HC-NH-CH(CH3)2. It is best known as its lithium derivative of its conjugate base, lithium diisopropylamide, known as "LDA". LDA is a strong, non-nucleophilic base.

Diisopropylamine can be dried by distillation from potassium hydroxide (KOH) or drying over sodium wire.[5]

Reactions and uses[edit]

Diisopropylamine is primarily used as a precursor to two herbicides, diallate and triallate, as well as certain sulfenamides used in the vulcanization of rubber.[6] It is also used to prepare N,N-Diisopropylethylamine (Hünig's base) by alkylation with diethyl sulfate.[7]

The bromide salt of diisopropylamine, diisopropylammonium bromide, is an organic molecular solid whose crystals are ferroelectric at room temperature.[8] This renders it a possible more biospherically inert alternative to barium titanate.

Preparation[edit]

Diisopropylamine is commercially available. It may be prepared by the reductive amination of acetone with ammonia using a modified copper oxide, generally copper chromite, as a catalyst:[9][10]

NH
3
+ 2(CH
3
)
2
CO
+ 2H
2
C
6
H
15
N
+ 2H
2
O

References[edit]

  1. ^ a b c d e NIOSH Pocket Guide to Chemical Hazards. "#0217". National Institute for Occupational Safety and Health (NIOSH).
  2. ^ April 2019 "DIISOPROPYLAMINE" Check |url= value (help).
  3. ^ "DIISOPROPYLAMINE". pub chem. NIH. Retrieved 20 October 2015.
  4. ^ a b "Diisopropylamine". Immediately Dangerous to Life and Health Concentrations (IDLH). National Institute for Occupational Safety and Health (NIOSH).
  5. ^ Armarego, W. L. F. and Perrin, D. D. Purification of Laboratory Chemicals 4th Ed. pg 186, Butterworth and Heinemann: Boston, 1996.
  6. ^ Karsten Eller, Erhard Henkes, Roland Rossbacher, Hartmut Höke "Amines, Aliphatic" Ullmann's Encyclopedia of Industrial Chemistry, 2000, Wiley-VCH, Weinheim. doi:10.1002/14356007.a02_001
  7. ^ Hünig, S.; Kiessel, M. (1958). "Spezifische Protonenacceptoren als Hilfsbasen bei Alkylierungs- und Dehydrohalogenierungsreaktionen". Chemische Berichte. 91 (2): 380–392. doi:10.1002/cber.19580910223.
  8. ^ "An organic alternative to oxides? Organic ferroelectric molecule shows promise for memory chips, sensors". phys.org. Jan 24, 2013.
  9. ^ Karl Löffler (1910). "Über eine neue Bildungsweise primärer und sekundärer Amine aus Ketonen". Berichte. 43 (2): 2031–2035. doi:10.1002/cber.191004302145.
  10. ^ US 2686811, Willard Bull, "One-step process for preparing diisopropylamine"