Diisopropylamine

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Not to be confused with Diisopropanolamine.
Diisopropylamine
Skeletal formula of diisopropylamine
Names
Preferred IUPAC name
N-(Propan-2-yl)propan-2-amine
Other names
Di(propan-2-yl)amine
N-Isopropylpropan-2-amine
(Diisopropyl)amine
(The name diisopropylamine is deprecated.)
Identifiers
3D model (Jmol)
Abbreviations DIPA
605284
ChemSpider
ECHA InfoCard 100.003.235
EC Number 203-558-5
RTECS number IM4025000
UNII
UN number 1158
Properties
C6H15N
Molar mass 101.19 g·mol−1
Appearance Colorless liquid
Odor Fishy, ammoniacal
Density 0.722 g mL−1
Melting point −61.00 °C; −77.80 °F; 212.15 K
Boiling point 83 to 85 °C; 181 to 185 °F; 356 to 358 K
miscible[1]
Vapor pressure 6.7 kPa (at 20 °C)
Acidity (pKa) 11.07 (in water) (conjugate acid)
Basicity (pKb) 3.43[2]
1.392–1.393
Thermochemistry
−173.6 to −168.4 kJ mol−1
−4.3363 to −4.3313 MJ mol−1
Hazards
GHS pictograms The flame pictogram in the Globally Harmonized System of Classification and Labelling of Chemicals (GHS) The corrosion pictogram in the Globally Harmonized System of Classification and Labelling of Chemicals (GHS) The exclamation-mark pictogram in the Globally Harmonized System of Classification and Labelling of Chemicals (GHS)
GHS signal word DANGER
H225, H302, H314, H332
P210, P280, P305+351+338, P310
Highly Flammable F Corrosive C
R-phrases R11, R20/22, R34
S-phrases (S1/2), S16, S26, S36/37/39
NFPA 704
Flammability code 3: Liquids and solids that can be ignited under almost all ambient temperature conditions. Flash point between 23 and 38 °C (73 and 100 °F). E.g., gasoline) Health code 2: Intense or continued but not chronic exposure could cause temporary incapacitation or possible residual injury. E.g., chloroform Reactivity code 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g., liquid nitrogen Special hazards (white): no codeNFPA 704 four-colored diamond
Flash point −17 °C (1 °F; 256 K)
315 °C (599 °F; 588 K)
Explosive limits 1.1–7.1%[1]
Lethal dose or concentration (LD, LC):
  • 770 mg kg−1 (oral, rat)
  • >10 g kg−1 (dermal, rabbit)
1140 ppm (rat, 2 hr)
1000 ppm (mouse, 2 hr)[3]
2207 ppm (rabbit, 2.5 hr)
2207 ppm (guinea pig, 80 min)
2207 ppm (cat, 72 min)[3]
US health exposure limits (NIOSH):
PEL (Permissible)
TWA 5 ppm (20 mg/m3) [skin][1]
REL (Recommended)
TWA 5 ppm (20 mg/m3) [skin][1]
IDLH (Immediate danger)
200 ppm[1]
Related compounds
Related amines
Related compounds
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
N verify (what is YesYN ?)
Infobox references

Diisopropylamine is a secondary amine with the chemical formula (CH3)2HC-NH-CH(CH3)2. It is best known as its lithium derivative of its conjugate base, lithium diisopropylamide, known as "LDA". LDA is a strong, non-nucleophilic base.

Diisopropylamine can be dried by distillation from potassium hydroxide (KOH) or drying over sodium wire.[4]

Reactions and uses[edit]

Diisopropylamine is primarily used as a precursor to two herbicides, diallate and triallate, as well as certain sulfenamides used in the vulcanization of rubber.[5] It is also used to prepare N,N-Diisopropylethylamine (Hünig's base) by alkylation with diethyl sulfate.[6]

The bromide salt of diisopropylamine, diisopropylammonium bromide, is an organic molecular solid whose crystals are ferroelectric at room temperature.[7] This renders it a possible more biospherically inert alternative to barium titanate.

Preparation[edit]

Diisopropylamine is commercially available. It may be prepared by the reductive amination of acetone with ammonia using a modified copper oxide, generally copper chromite, as a catalyst:[8][9]

NH
3
+ 2(CH
3
)
2
CO
+ 2H
2
C
6
H
15
N
+ 2H
2
O

References[edit]

  1. ^ a b c d e "NIOSH Pocket Guide to Chemical Hazards #0217". National Institute for Occupational Safety and Health (NIOSH). 
  2. ^ "DIISOPROPYLAMINE". pub chem. NIH. Retrieved 20 October 2015. 
  3. ^ a b "Diisopropylamine". Immediately Dangerous to Life and Health. National Institute for Occupational Safety and Health (NIOSH). 
  4. ^ Armarego, W. L. F. and Perrin, D. D. Purification of Laboratory Chemicals 4th Ed. pg 186, Butterworth and Heinemann: Boston, 1996.
  5. ^ Karsten Eller, Erhard Henkes, Roland Rossbacher, Hartmut Höke "Amines, Aliphatic" Ullmann's Encyclopedia of Industrial Chemistry, 2000, Wiley-VCH, Weinheim. doi:10.1002/14356007.a02_001
  6. ^ Hünig, S.; Kiessel, M. (1958). "Spezifische Protonenacceptoren als Hilfsbasen bei Alkylierungs- und Dehydrohalogenierungsreaktionen". Chemische Berichte. 91 (2): 380–392. doi:10.1002/cber.19580910223. 
  7. ^ "An organic alternative to oxides? Organic ferroelectric molecule shows promise for memory chips, sensors". phys.org. Jan 24, 2013. 
  8. ^ Karl Löffler. "Über eine neue Bildungsweise primärer und sekundärer Amine aus Ketonen". Berichte. 43 (2): 2031–2035. doi:10.1002/cber.191004302145. 
  9. ^ US 2686811, Willard Bull, "One-step process for preparing diisopropylamine"