Disphenocingulum

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search
Disphenocingulum
Disphenocingulum.png
TypeJohnson
J89 - J90 - J91
Faces4+2x8 triangles
4 squares
Edges38
Vertices16
Vertex configuration4(32.42)
4(35)
8(34.4)
Symmetry groupD2d
Dual polyhedron-
Propertiesconvex
Net
Johnson solid 90 net.png

In geometry, the disphenocingulum is one of the Johnson solids (J90). It is one of the elementary Johnson solids that do not arise from "cut and paste" manipulations of the Platonic and Archimedean solids.

A Johnson solid is one of 92 strictly convex polyhedra that have regular faces but are not uniform (that is, they are not Platonic solids, Archimedean solids, prisms, or antiprisms). They were named by Norman Johnson, who first listed these polyhedra in 1966.[1]

References[edit]

  1. ^ Johnson, Norman W. (1966), "Convex polyhedra with regular faces", Canadian Journal of Mathematics, 18: 169–200, doi:10.4153/cjm-1966-021-8, MR 0185507, Zbl 0132.14603.

External links[edit]