Dynamics Explorer

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search
Dynamics Explorer 1
Mission typeMagnetospheric research
COSPAR ID1981-070A
SATCAT no.12624
Spacecraft properties
ManufacturerRCA Astro
Launch mass424 kilograms (935 lb)
Power68 W
Start of mission
Launch dateAugust 03, 1981, 09:56:00 (1981-08-03UTC09:56Z) UTC
RocketDelta 3913 642/D155
Launch siteVandenberg SLC-2W
Orbital parameters
Reference systemGeocentric
Semi-major axis18,238.0 kilometers (11,332.6 mi)
Perigee altitude488.6 kilometers (303.6 mi)
Apogee altitude23,246.3 kilometers (14,444.6 mi)
Period408.5 minutes
Epoch27 June 2016
Revolution no.59680
Dynamics Explorer 2
Mission typeMagnetospheric research
COSPAR ID1981-070B
SATCAT no.12625
Spacecraft properties
ManufacturerRCA Astro
Launch mass420 kilograms (926 lb)
Power115 W
Start of mission
Launch dateAugust 03, 1981, 09:56:00 (1981-08-03UTC09:56Z) UTC
RocketDelta 3913 642/D155
Launch siteVandenberg SLC-2W
End of mission
Decay dateFebruary 19, 1983
Orbital parameters
Reference systemGeocentric
Perigee altitude309 kilometers (192 mi)
Apogee altitude1,012 kilometers (629 mi)
Period98 minutes
Epoch03 August 1981
Revolution no.8593

Dynamics Explorer was a NASA mission, launched on August 3, 1981 and terminated on February 28, 1991.[1] It consisted of two unmanned satellites, DE-1 and DE-2, whose purpose was to investigate the interactions between plasmas in the magnetosphere and those in the ionosphere.[2] The two satellites were launched together into polar coplanar orbits, which allowed them to simultaneously observe the upper and lower parts of the atmosphere.


Both spacecraft had a polygonal shape, and were approximately 137 cm in diameter and 115 cm high. Each also had a 200-cm radio antenna and two 6-meter booms which were needed to distance some of the equipment from the main body of the spacecraft. They were stacked on top of each other and launched aboard a Delta 3000 booster rocket. Upon reaching orbit, the two spacecraft departed from the booster and entered separate orbits. Dynamics Explorer 1 was placed into a high altitude elliptical orbit, while DE-2 was put into a lower orbit that was also more circular.

Dynamics Explorer 1 Instrumentation[edit]

Dynamics Explorer 1 carried the following instruments[3]:

  • Plasma Wave Instrument (PWI), which measured auroral kilometric radiation, auroral hiss, Z-mode radiation, and narrow band electromagnetic emissions.
  • The Spin-scan Auroral Imager (SAI)
  • The Retarding Ion Mass Spectrometer (RIMS)
  • Energetic Ion Composition Spectrometer (EICS)
  • High Altitude Plasma Instrument (HAPI)
  • Magnetic Field Observations Triaxial Fluxgate Magnetometer (MAG-A)

In addition, there were two Earth-based investigations, Auroral Physics Theory and Controlled and Naturally Occurring Wave Particle Interactions Theory. The later involved broadcasting very-low-frequency/low-frequency (0.5-200 kHz) signals from a transmitter located at Siple, Antarctica, which were received by the PWI instrument on Dynamics Explorer 1.

Dynamics Explorer 2 Instrumentation[edit]

The Dynamics Explorer 2 carried the following instruments for data collection:

Mission Results[edit]

As a result of a malfunction in the Delta 3000 booster rocket in which its main engine shut off slightly early, DE-2 was placed into a slightly lower orbit than was anticipated. This was not a serious problem, however, and the spacecraft had lasted its expected lifespan when it re-entered the Earth's atmosphere on February 19, 1983. DE-1, being in a higher orbit, continued to collect data until 1991, when the mission was officially terminated.


  1. ^ DE (Dynamics Explorer)
  2. ^ NSSDC Master Catalog
  3. ^ "National Space Science Data Center: Experiments on Dynamics Explorer 1". NASA/NSSDC.
  4. ^ Dynamics Explorer 2 Archived 2007-03-15 at the Wayback Machine
  5. ^ a b Spencer, N. W., Wharton, L. E., Carignan, G. R. and Maurer, J. C. (1982), Thermosphere zonal winds, vertical motions and temperature as measured from Dynamics Explorer. Geophys. Res. Lett., 9: 953–956. doi:10.1029/GL009i009p00953.
  6. ^ Spencer, N. W., Theis, R. F., Wharton, L. E. and Carignan, G. R. (1976), Local vertical motions and kinetic temperature from AE-C as evidence for aurora-induced gravity waves. Geophys. Res. Lett., 3: 313–316. doi:10.1029/GL003i006p00313.

External links[edit]