ERCC5

From Wikipedia, the free encyclopedia
Jump to: navigation, search
ERCC5
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases ERCC5, COFS3, ERCM2, UVDR, XPG, XPGC, ERCC5-201, excision repair cross-complementation group 5, ERCC excision repair 5, endonuclease
External IDs MGI: 103582 HomoloGene: 133551 GeneCards: ERCC5
RNA expression pattern
PBB GE ERCC5 202414 at fs.png
More reference expression data
Orthologs
Species Human Mouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_000123

NM_011729

RefSeq (protein)

NP_000114

n/a

Location (UCSC) Chr 13: 102.84 – 102.88 Mb Chr 1: 44.15 – 44.18 Mb
PubMed search [1] [2]
Wikidata
View/Edit Human View/Edit Mouse

DNA repair protein complementing XP-G cells is a protein that in humans is encoded by the ERCC5 gene.[3][4]

Excision repair cross-complementing rodent repair deficiency, complementation group 5 (xeroderma pigmentosum, complementation group G) is involved in excision repair of UV-induced DNA damage. Mutations cause Cockayne syndrome, which is characterized by severe growth defects, mental retardation, and cachexia. Multiple alternatively spliced transcript variants encoding distinct isoforms have been described, but the biological validity of all variants has not been determined.[4]

Mutations in ERCC5 cause arthrogryposis .[5]

XPG is a structure specific endonuclease that incises DNA at the 3’ side of the damaged nucleotide during nucleotide excision repair.

Syndromes[edit]

Mutational defects in the Ercc5(Xpg) gene can cause either the cancer-prone condition xeroderma pigmentosum (XP) alone, or in combination with the severe neurodevelopmental disorder Cockayne syndrome (CS) or the infantile lethal cerebro-oculo-facio-skeletal syndrome.[6]

Mouse model[edit]

An Ercc5(Xpg) mutant mouse model presented features of premature aging including cachexia and osteoporosis with pronounced degenerative phenotypes in both liver and brain.[6] These mutant mice developed a multi-system premature aging degenerative phenotype that appears to strengthen the link between DNA damage and aging.[6] (see DNA damage theory of aging).

Dietary restriction, which extends lifespan of wild-type mice, also substantially increased the lifespan of Ercc5(Xpg) mutant mice.[7] Dietary restriction of the mutant mice, while delaying aging, also appeared to slow the accumulation of genome wide DNA damage and to preserve transcriptional output, thus contributing to improved cell viability.

Interactions[edit]

ERCC5 has been shown to interact with ERCC2.[8]

References[edit]

  1. ^ "Human PubMed Reference:". 
  2. ^ "Mouse PubMed Reference:". 
  3. ^ Samec S, Jones TA, Corlet J, Scherly D, Sheer D, Wood RD, Clarkson SG (Oct 1994). "The human gene for xeroderma pigmentosum complementation group G (XPG) maps to 13q33 by fluorescence in situ hybridization". Genomics. 21 (1): 283–5. doi:10.1006/geno.1994.1261. PMID 8088806. 
  4. ^ a b "Entrez Gene: ERCC5 excision repair cross-complementing rodent repair deficiency, complementation group 5 (xeroderma pigmentosum, complementation group G (Cockayne syndrome))". 
  5. ^ Drury, S; Boustred, C; Tekman, M; Stanescu, H; Kleta, R; Lench, N; Chitty, L. S.; Scott, R. H. (2014). "A novel homozygous ERCC5 truncating mutation in a family with prenatal arthrogryposis-Further evidence of genotype-phenotype correlation". American Journal of Medical Genetics Part A. 164 (7): 1777–83. doi:10.1002/ajmg.a.36506. PMID 24700531. 
  6. ^ a b c Barnhoorn S, Uittenboogaard LM, Jaarsma D, Vermeij WP, Tresini M, Weymaere M, Menoni H, Brandt RM, de Waard MC, Botter SM, Sarker AH, Jaspers NG, van der Horst GT, Cooper PK, Hoeijmakers JH, van der Pluijm I (2014). "Cell-autonomous progeroid changes in conditional mouse models for repair endonuclease XPG deficiency". PLoS Genet. 10 (10): e1004686. doi:10.1371/journal.pgen.1004686. PMC 4191938Freely accessible. PMID 25299392. 
  7. ^ Vermeij WP, Dollé ME, Reiling E, Jaarsma D, Payan-Gomez C, Bombardieri CR, Wu H, Roks AJ, Botter SM, van der Eerden BC, Youssef SA, Kuiper RV, Nagarajah B, van Oostrom CT, Brandt RM, Barnhoorn S, Imholz S, Pennings JL, de Bruin A, Gyenis Á, Pothof J, Vijg J, van Steeg H, Hoeijmakers JH (2016). "Restricted diet delays accelerated ageing and genomic stress in DNA-repair-deficient mice". Nature. 537 (7620): 427–431. doi:10.1038/nature19329. PMC 5161687Freely accessible. PMID 27556946. 
  8. ^ Iyer, N; Reagan M S; Wu K J; Canagarajah B; Friedberg E C (Feb 1996). "Interactions involving the human RNA polymerase II transcription/nucleotide excision repair complex TFIIH, the nucleotide excision repair protein XPG, and Cockayne syndrome group B (CSB) protein". Biochemistry. UNITED STATES. 35 (7): 2157–67. doi:10.1021/bi9524124. ISSN 0006-2960. PMID 8652557. 

External links[edit]

Further reading[edit]