Earth analog

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Not to be confused with Counter-Earth.
The planet Earth

An Earth analog (also referred to as a Twin Earth, Earth Twin, Second Earth, Alien Earth, Earth 2 or Earth-like planet) is another planet (or world) with environmental conditions similar to those found on the planet Earth.

The possibility is of particular interest to humans as it is easily inferred that the more similar a planet is to Earth, the more likely it is of sustaining Earth-like complex extraterrestrial life. As such, it has long been speculated and the subject expressed in science, philosophy, science fiction and popular culture. Advocates of space colonization have long sought an Earth analog as a "second home", while advocates for space and survival would regard such a planet as a potential "new home" for mankind.

Before the scientific search for and study of extrasolar planets, the possibility was argued through philosophy and science fiction. The mediocrity principle suggests that planets like Earth should be common in the universe, while the Rare Earth hypothesis suggests that they are extremely rare. Philosophers have pointed out that the size of the universe is such that a near-identical planet must exist somewhere. In the future, technology may be used by humans to artificially produce an Earth analog by terraforming. The multiverse theory suggests that an Earth analog could exist in another universe or even be another version of the Earth itself in a parallel universe.

On November 4, 2013, astronomers reported, based on Kepler space mission data, that there could be as many as 40 billion Earth-sized planets orbiting in the habitable zones of sun-like stars and red dwarf stars within the Milky Way galaxy.[1][2] 11 billion of these estimated planets may be orbiting Sun-like stars.[3] The nearest such planet may be 12 light-years away, according to the scientists.[1][2]

Scientific findings since the 1990s have greatly influenced the scope of the fields of astrobiology, models of planetary habitability and the search for extraterrestrial intelligence (SETI). NASA and the SETI Institute have proposed categorising the increasing number of planets found using a measure called the Earth Similarity Index (ESI) based on mass, radius and temperature.[4][5] According to this measure, as of 23 July 2015, the confirmed planet currently thought to be most similar to Earth on mass, radius and temperature is Kepler-438b.[6] Findings have led scientists to report estimations of billions of Earth-size planets within the Milky Way galaxy alone.[2][7]


Percival Lowell depicted Mars as a dry but Earth-like planet and habitable for an extraterrestrial civilisation

Around 400 BC, Philolaus proposed that there existed a Counter-Earth, a counterbalance of the same mass to prevent the universe from being flung apart.

Between 1858 and 1920, Mars was believed by many, including some scientists, to be very similar to Earth, only drier with a thick atmosphere, similar axial tilt, orbit and seasons as well as a Martian civilization that had built great Martian canals. These theories were advanced by Giovanni Schiaparelli, Percival Lowell and others. As such Mars in fiction portrayed the red planet as similar to Earth but with a desert like landscape. Images and data from the Mariner (1965) and Viking space probes, however, revealed the planet as a barren cratered world.[8][9][10][11][12][13] However, with continuing discoveries other Earth comparisons remained. For example, the Mars Ocean Hypothesis had its origins in the Viking missions and was popularised during the 1980s.[14] With the possibility of past water, there was the possibility that life could have begun on Mars and it was once again perceived to be more Earth-like.

Likewise, until the 1960s, Venus was believed by many, including some scientists, to be a warmer version of Earth with a thick atmosphere and either hot and dusty or humid with water clouds and oceans.[15] Venus in fiction was often portrayed as having similarities to Earth and many speculated about Venusian civilization. These beliefs were dispelled in the 1960s as the first space probes gathered more accurate scientific data on the planet and found that Venus is a very hot world with the surface temperature around 900 °F (482 °C) under an acidic atmosphere 92 times thicker the Earth's.[citation needed]

Attributes and criteria[edit]

The probability of finding an Earth analog depends mostly on the attributes that are expected to be similar, and these vary greatly. Generally it is considered that it would be a terrestrial planet and there have been several scientific studies aimed at finding such planets. Often implied but not limited to are such criteria as planet size, surface gravity, star size and type (i.e. Solar analog), orbital distance and stability, axial tilt and rotation, similar geography, oceans, air and weather conditions, strong magnetosphere and even the presence of Earth-like complex life. If there is complex life, there could be some forests covering much of the land. If there is intelligent life, some parts of land could be covered in cities. Some factors that are assumed of such a planet may be unlikely due to Earth's own history. For instance the Earth's atmosphere was not always oxygen-rich and this is a biosignature from the emergence of photosynthetic life. The formation, presence, influence on these characteristics of the Moon (such as tidal forces) may also pose a problem in finding an Earth analog.


Size Comparisons: Kepler-20e[16] and Kepler-20f[17] with Venus and Earth.

Size is often thought to be a significant factor, as planets of Earth's size are thought more likely to be terrestrial in nature and be capable of retaining a significant atmosphere.[citation needed]

The list includes planets within the range of 0.8-1.9 Earth masses, below which are generally classed as "sub-Earth" and above classed as "super-Earth". In addition, only planets known to fall within the range of 0.5-2.0 Earth radius (between half and twice the radius of the Earth) are included. In contrast, the Earth Similarity Index uses both mass and radius as criteria.

According to the size criteria, the closest planetary mass objects by known radius or mass are:

Name Earth masses (Me) Earth radii (Re) Note
Kepler-69c 0.98 1.7 Originally thought to be in the Circumstellar habitable zone (CHZ), now thought to be too hot.
Kepler-9d >1.5[18] 1.64 Extremely hot
COROT-7b <9 1.58 Extremely hot
Kepler-20f < 14.3[17] 1.03[17] Slightly larger and likely more massive, far too hot to be Earth-like
Tau Ceti b 2 Extremely hot. Not known to transit.
Alpha Centauri Bb 1.1[19] Closest known mass to Earth but much hotter
NOTE: May not exist (NYT, June 10, 2013).[20]
Kepler-186f 1.1[21] Orbits in CHZ
Earth 1 1 Orbits in habitable zone
Venus 0.815 0.949 Much hotter
Kepler-20e < 3.08[16] 0.87[16] Too hot to be Earth-like

This comparison indicates that size alone is a poor measure, particularly in terms of habitability. Temperature must also be considered as Venus and the planets of Alpha Centauri B (discovered in 2012), Kepler-20 (discovered in 2011[22][23]), COROT-7 (discovered in 2009) and the three planets of Kepler-42 (all discovered in 2011) are very hot, and Mars, Ganymede and Titan are frigid worlds, resulting also in wide variety of surface and atmospheric conditions. The mass of the Solar System's moons are a tiny fraction of that of Earth whereas the mass of extrasolar planets are very difficult to accurately measure. However discoveries of Earth-sized terrestrial planets are important as they may indicate the probable frequency and distribution of Earth-like planets.


Surfaces like this of Saturn's moon Titan (taken by Huygens probe) bear superficial similarities to the floodplains of Earth

Another criterion often cited is that an Earth analog must be terrestrial, that is, it should possess a similar surface geology—a planetary surface composed of similar surface materials. The closest known examples are Mars and Titan and while there are similarities in their types of landforms and surface compositions, there are also significant differences such as the temperature and quantities of ice.

Many of Earth's surface materials and landforms are formed as a result of interaction with water (such as clay and sedimentary rocks) or as a byproduct of organic life (such as limestone or coal), interaction with the atmosphere, volcanically or artificially. A true Earth analog therefore might need to have formed through similar processes, having possessed an atmosphere, volcanic interactions with the surface, past or present liquid water and life forms.


There are several factors that can determine planetary temperatures and therefore several measures that can draw comparisons to that of the Earth in planets where atmospheric conditions are unknown.[citation needed] Equilibrium temperature is used for planets without atmospheres. With atmospheres, a greenhouse effect is assumed. Finally, surface temperature is used. Each of these temperatures is of course affected by climate, which is influenced by the orbit and rotation (or tidal locking) of the planet, each of which introduces further variabilities.

Below is a comparison of the confirmed planets with the closest known temperatures to Earth.

Venus Earth Kepler 22b Mars
307 K
34 °C
93 °F
255 K
−18 °C
−0.4 °F
262 K
−11 °C
22.2 °F
206 K
−67 °C
−88.6 °F
+ Venus'
GHG effect
737 K
464 °C
867 °F
+ Earth's
GHG effect
288 K
15 °C
59 °F
295 K
22 °C
71.6 °F
+ Mars'
GHG effect
210 K
−63 °C
−81 °F
Almost No Unknown No
Bond Albedo
0.9 0.29 Unknown 0.25

Solar analog[edit]

Main article: Solar analog

Another criteria of an Earth analog is that it should orbit a solar analog, that is, a star much like our Sun, similar photometrically or in terms of spectral type.[citation needed] It follows that the composition of a planet around a solar twin with similar metallicity might have a similar composition to Earth. Also, this would help eliminate stellar extremes and variability that may be applicable to other types of stars.

While planets have been discovered orbiting similar stars to the Sun, most are gas giant or super-Earth sized, and additionally many of these planetary systems have proven to be surprisingly different from our own. This measure is not entirely reliable as Mars and Venus also orbit the Sun but have different compositions and properties.

Kepler-22, the parent star of Kepler-22b, is slightly smaller and cooler than the Sun.

Surface-water and hydrological cycle[edit]

Water covers 70% of Earth's surface and is required by all known life.
Kepler-22b, located in the habitable zone of a Sun-like star may be the best exoplanetary candidate for extraterrestrial surface water discovered to date, but is significantly larger than Earth and its actual composition is unknown
Main article: Habitable zone

The concept of the Liquid Water Zone (or habitable zone) defines a region where water can exist on the surface and is based on the properties of both the Earth and Sun. Under this model, Earth orbits roughly at the centre of this zone or in the "Goldilocks" position. Earth is the only planet in the universe confirmed to possess large bodies of surface water. Venus is on the hot side of the zone while Mars is on the cold side. Neither are known to have persistent surface water, though evidence exists that Mars did have in its ancient past,[28][29][30] and it is speculated that the same was the case for Venus.[15] Thus extrasolar planets (or moons) in the Goldilocks position with substantial atmospheres may possess oceans and water clouds like those on Earth. In addition to surface water, a true Earth analog would require a mix of oceans or lakes and areas not covered by water, or land.

Some argue that a true Earth analog must not only have a similar position of its planetary system but also orbit a solar analog and have a near circular orbit such that it remains continually habitable like Earth.[citation needed] The best candidate to date by these measures is Kepler-22b.[citation needed] It orbits a Sun-like star in a similar position within the habitable zone, but it is much larger than Earth and its composition is currently unknown. Our Solar System has shown that just being in the habitable zone does not guarantee that a planet is "Earth-like".[clarification needed][citation needed]

However, planets remarkably Earth-like may be found using less strict criteria.[citation needed] For example, under certain conditions, such as strong greenhouse effect, atmospheric pressure or gravity, a planet could theoretically possess surface water lakes and oceans without being strictly within the habitable zone.[citation needed] Indeed, Saturn's moon Titan is the only other body in the Solar System known to have surface liquid, however, it is hydrocarbons rather than water.

Candidates in the Solar System[edit]

Early in the history of astronomy, Venus (and to a lesser extent Mars and Neptune) were speculated to be Earth-like planets and some even conceptualised them to be home to extraterrestrial civilisation. However, these were later found to be misconceptions. Still, scientists continue to find similarities with Mars and postulate that both ancient Venus[citation needed] and Mars[citation needed] could have been quite Earth-like.


Size comparison of Earth and Mars.

Mars, the second closest planet, appears to have had and still have some similarities to Earth. Like Earth, Mars had an atmosphere with a greenhouse effect,[citation needed] geographical similarities including polar ice caps, similar rotation, volcanic activity and evidence of water. As such, Mars remains a candidate for sub-surface microbial extraterrestrial life. It also makes human colonization of Mars a subject of much research.

However Mars is much smaller, it lacks a magnetosphere and its year is almost twice as long. Its freezing climate, lower gravity and thin but toxic carbon dioxide atmosphere all make it hostile to Earth life.

Ancient Mars[edit]

An artist's impression of ancient Mars and its oceans based on geological data

Ancient Mars may have been quite Earth-like with a similar climate[citation needed] and liquid water.

Mars Ocean Hypothesis[edit]
Main article: Mars Ocean Hypothesis

The Mars Ocean Hypothesis states that nearly a third of the surface of Mars was covered by an ocean of liquid water early in the planet's geologic history.[29] This primordial ocean, dubbed Oceanus Borealis,[31] would have filled the Vastitas Borealis basin in the northern hemisphere, a region that lies 4–5 km (2.5–3 miles) below the mean planetary elevation, at a time period of approximately 3.8 billion years ago. Evidence for this ocean includes geographic features resembling ancient shorelines, and the chemical properties of the Martian soil and atmosphere. Early Mars would have required a denser atmosphere and warmer climate to allow liquid water to remain at the surface.[32]


Venus is sometimes called Earth's "sister planet" due to the similar size, gravity, and bulk composition. Like Earth, it has an atmosphere with a greenhouse effect and clouds, rain and is volcanically active. A younger Venus is thought to have possessed Earth-like oceans,[15] but these evaporated as the temperature rose. This may be due to the fact that Venus, owing to its slow rotation, does not have a significant magnetic field, allowing the constituent atoms of the water to be blown away by the solar wind.[33] However, the extreme heat on present-day Venus, combined with the crushing atmosphere composed of toxic carbon dioxide and sulfuric acid rain, makes the surface hostile to Earth life. The possibility that a habitable niche exists in the lower and middle cloud layers of Venus cannot yet be excluded.[34]

Saturn's moon Titan[edit]

Ultraviolet and infrared image of Saturn's moon Titan

Saturn's moon Titan has some Earth-like properties. The moon has a dense atmosphere,[35] with clouds and methane rain. Titan is the only object other than Earth for which clear evidence of stable bodies of surface liquid (hydrocarbons) has been found.[36]

The possibility of life on Titan is a subject of ongoing research. In billions of years, Titan may become Earth-like as the Solar System's habitable zone moves farther out.[citation needed] However, Titan is much smaller than Earth, it has a lower gravity and its composition, including its toxic methane atmosphere and anti-greenhouse effect, is hostile to Earth life.

Extrasolar Earth analog[edit]

Artist's rendering of Kepler-22b, a possible Earth analog orbiting a Sun-like star about 600 light years away.

The mediocrity principle suggests that there is a chance that serendipitous events may have allowed an Earth-like planet to form elsewhere that would allow the emergence of complex, multi-cellular life. In contrast, the Rare Earth hypothesis asserts that if the strictest criteria are applied, such a planet, if it exists, may be so far away that humans may never locate it.

Because the Solar System proved to be devoid of an Earth analog, the search has widened to extrasolar planets. Astrobiologists assert that Earth analogs would most likely be found in a stellar habitable zone, in which liquid water could exist, providing the conditions for supporting life. Some astrobiologists, such as Dirk Schulze-Makuch, estimated that a sufficiently massive natural satellite may form a habitable moon similar to Earth.

Perhaps one of the most promising Earth-like planets to date, Kepler-22b was confirmed on December 5, 2011,[37] orbiting the habitable zone of its star. At 2.4 times the radius of Earth,[38] it has an estimated surface temperature about 22 °C (72 °F) however, its mass and surface composition remain unknown.[39][37]

Estimated frequency[edit]

The frequency of Earth-like planets in both the Milky Way and the larger universe is still unknown. It ranges from the extreme Rare Earth hypothesis estimates – one (i. e., Earth) to innumerable.

Several current scientific studies, including the Kepler mission, are aimed at refining estimates using real data from transiting planets. A 2008 study by astronomer Michael Meyer from the University of Arizona of cosmic dust near recently formed Sun-like stars suggests that between 20% and 60% of solar analogs have evidence for the formation of rocky planets, not unlike the processes that led to those of Earth.[40] Meyer's team found discs of cosmic dust around stars and sees this as a byproduct of the formation of rocky planets.

In 2009, Alan Boss of the Carnegie Institution of Science speculated that there could be 100 billion terrestrial planets in our Milky Way galaxy alone.[41]

In 2011 NASA's Jet Propulsion Laboratory (JPL) and based on observations from the Kepler Mission is that about 1.4% to 2.7% of all Sun-like stars are expected to have Earth-size planets within the habitable zones of their stars. This means there could be two billion of them in the Milky Way galaxy alone, and assuming that all galaxies have a similar number as the Milky Way, in the 50 billion galaxies in the observable universe, there may be as many as a hundred quintillion.[42]

In 2013, a Harvard-Smithsonian Center for Astrophysics using statistical analysis of additional Kepler data suggested that there are at least 17 billion Earth-sized planets in the Milky Way.[43] This, however, says nothing of their position in relation to the habitable zone.


Main article: Terraforming
Artist's conception of a terraformed Venus, a potential Earth analog

Terraforming (literally, "Earth-forming") of a planet, moon, or other body is the hypothetical process of deliberately modifying its atmosphere, temperature, surface topography or ecosystems to be similar to those of Earth to make it habitable to humans.

Due to proximity and similarity in size, Mars, and to a lesser extent Venus, are seen as the most likely candidates for terraforming.[citation needed]


  1. ^ a b Overbye, Dennis (November 4, 2013). "Far-Off Planets Like the Earth Dot the Galaxy". New York Times. Retrieved November 5, 2013. 
  2. ^ a b c Petigura, Eric A.; Howard, Andrew W.; Marcy, Geoffrey W. (October 31, 2013). "Prevalence of Earth-size planets orbiting Sun-like stars". Proceedings of the National Academy of Sciences of the United States of America. arXiv:1311.6806. Bibcode:2013PNAS..11019273P. doi:10.1073/pnas.1319909110. Retrieved November 5, 2013. 
  3. ^ Khan, Amina (November 4, 2013). "Milky Way may host billions of Earth-size planets". Los Angeles Times. Retrieved November 5, 2013. 
  4. ^
  5. ^ Stuart Gary New approach in search for alien life ABC Online. November 22, 2011
  6. ^
  7. ^ "Study: 8.8 billion Earth-size, just-right planets",
  8. ^ O'Gallagher, J.J.; Simpson, J.A. (September 10, 1965). "Search for Trapped Electrons and a Magnetic Moment at Mars by Mariner IV". Science, New Series 149 (3689): 1233–1239. Bibcode:1965Sci...149.1233O. doi:10.1126/science.149.3689.1233. PMID 17747452. 
  9. ^ Smith, Edward J.; Davis Jr., Leverett; Coleman Jr., Paul J.; Jones, Douglas E. (September 10, 1965). "Magnetic Field Measurements Near Mars". Science, New Series 149 (3689): 1241–1242. Bibcode:1965Sci...149.1241S. doi:10.1126/science.149.3689.1241. PMID 17747454. 
  10. ^ Leighton, Robert B.; Murray, Bruce C.; Sharp, Robert P.; Allen, J. Denton; Sloan, Richard K. (August 6, 1965). "Mariner IV Photography of Mars: Initial Results". Science, New Series 149 (3684): 627–630. Bibcode:1965Sci...149..627L. doi:10.1126/science.149.3684.627. PMID 17747569. 
  11. ^ Kliore, Arvydas; Cain, Dan L.; Levy, Gerald S.; Eshleman, Von R.; Fjeldbo, Gunnar; Drake, Frank D. (September 10, 1965). "Occultation Experiment: Results of the First Direct Measurement of Mars's Atmosphere and Ionosphere". Science, New Series 149 (3689): 1243–1248. Bibcode:1965Sci...149.1243K. doi:10.1126/science.149.3689.1243. PMID 17747455. 
  12. ^ Salisbury, Frank B. (April 6, 1962). "Martian Biology". Science, New Series 136 (3510): 17–26. Bibcode:1962Sci...136...17S. doi:10.1126/science.136.3510.17. PMID 17779780. 
  13. ^ Kilston, Steven D.; Drummond, Robert R.; Sagan, Carl (1966). "A Search for Life on Earth at Kilometer Resolution". Icarus 5 (1–6): 79–98. Bibcode:1966Icar....5...79K. doi:10.1016/0019-1035(66)90010-8. 
  14. ^ NASA - Mars Ocean Hypothesis
  15. ^ a b c Hashimoto, G. L.; Roos-Serote, M.; Sugita, S.; Gilmore, M. S.; Kamp, L. W.; Carlson, R. W.; Baines, K. H. (2008). "Felsic highland crust on Venus suggested by Galileo Near-Infrared Mapping Spectrometer data". Journal of Geophysical Research, Planets 113: E00B24. Bibcode:2008JGRE..11300B24H. doi:10.1029/2008JE003134. 
  16. ^ a b c NASA Staff (20 December 2011). "Kepler: A Search For Habitable Planets - Kepler-20e". NASA. Retrieved 2011-12-23. 
  17. ^ a b c NASA Staff (20 December 2011). "Kepler: A Search For Habitable Planets - Kepler-20f". NASA. Retrieved 2011-12-23. 
  18. ^ Torres, Guillermo; Fressin, François (2011). "Modeling Kepler transit light curves as false positives: Rejection of blend scenarios for Kepler-9, and validation of Kepler-9d, a super-Earth-size planet in a multiple system" (PDF). Astrophysical Journal 727 (24). arXiv:1008.4393. Bibcode:2011ApJ...727...24T. doi:10.1088/0004-637X/727/1/24. Retrieved 20 March 2011. 
  19. ^ "Earth-like planet discovered next to our Solar System". The Daily Telegraph (London). 17 October 2012. 
  20. ^ Overbye, Dennis (10 June 2013). "Hold Off on the Alpha Centauri Trip". New York Times. Retrieved June 11, 2013. 
  21. ^ Johnson, Michele; Harrington, J.D. (17 April 2014). "NASA's Kepler Discovers First Earth-Size Planet In The 'Habitable Zone' of Another Star". NASA. Retrieved 17 April 2014. 
  22. ^ Johnson, Michele (20 December 2011). "NASA Discovers First Earth-size Planets Beyond Our Solar System". NASA. Retrieved 2011-12-20. 
  23. ^ Hand, Eric (20 December 2011). "Kepler discovers first Earth-sized exoplanets". Nature. doi:10.1038/nature.2011.9688. 
  24. ^ To stellar primary
  25. ^ "NASA, Mars: Facts & Figures". Retrieved 2010-01-28. 
  26. ^ Mallama, A.; Wang, D.; Howard, R.A. (2006). "Venus phase function and forward scattering from H2SO4". Icarus 182 (1): 10–22. Bibcode:2006Icar..182...10M. doi:10.1016/j.icarus.2005.12.014. 
  27. ^ Mallama, A. (2007). "The magnitude and albedo of Mars". Icarus 192 (2): 404–416. Bibcode:2007Icar..192..404M. doi:10.1016/j.icarus.2007.07.011. 
  28. ^ Cabrol, N. and E. Grin (eds.). 2010. Lakes on Mars. Elsevier. NY
  29. ^ a b Clifford, S. M. and T. J. Parker, 2001: The Evolution of the Martian Hydrosphere: Implications for the Fate of a Primordial Ocean and the Current State of the Northern Plains, Icarus 154, 40-79.
  30. ^ Villanueva, G., M. Mumma, R. Novak, H. Käufl, P. Hartogh, T. Encrenaz, A. Tokunaga, A. Khayat, M. Smith. Strong water isotopic anomalies in the martian atmosphere: Probing current and ancient reservoirs. Science, 2015 DOI: 10.1126/science.aaa3630
  31. ^ Baker, V. R., R. G. Strom, V. C. Gulick, J. S. Kargel, G. Komatsu and V. S. Kale, 1991: Ancient oceans, ice sheets and the hydrological cycle on Mars, Nature, 352, 589–594.
  32. ^ Read, Peter L. and S. R. Lewis, "The Martian Climate Revisited: Atmosphere and Environment of a Desert Planet", Praxis, Chichester, UK, 2004.
  33. ^ Caught in the wind from the Sun, July 12, 2008 
  34. ^ Cockell, C. S. (December 1999), "Life on Venus", Planetary and Space Science 47 (12): 1487–1501, Bibcode:1999P&SS...47.1487C, doi:10.1016/S0032-0633(99)00036-7 
  35. ^ "News Features: The Story of Saturn". Cassini-Huygens Mission to Saturn & Titan. NASA & JPL. Retrieved 2007-01-08. 
  36. ^ Stofan, E. R. et al. (2007). "The lakes of Titan". Nature 445 (1): 61–64. Bibcode:2007Natur.445...61S. doi:10.1038/nature05438. PMID 17203056. 
  37. ^ a b BBC NEWS, "Kepler 22-b: Earth-like planet confirmed" 12/5/2011
  38. ^ "NASA Telescope Confirms Alien Planet in Habitable Zone", 12/5/2011
  39. ^ "NASA – NASA's Kepler Confirms Its First Planet in Habitable Zone of Sun-like Star". NASA Press Release. Retrieved 6 December 2011. 
  40. ^ Planet-hunters set for big bounty, BBC
  41. ^ Galaxy may be full of 'Earths,' alien life
  42. ^ Choi, Charles Q. (21 March 2011). "New Estimate for Alien Earths: 2 Billion in Our Galaxy Alone". Retrieved 2011-04-24. 
  43. ^ 17 Billion Earth-Size Alien Planets Inhabit Milky Way 07 January 2013