Electro-optic effect

From Wikipedia, the free encyclopedia
Jump to: navigation, search

An electro-optic effect is a change in the optical properties of a material in response to an electric field that varies slowly compared with the frequency of light. The term encompasses a number of distinct phenomena, which can be subdivided into

In December 2015, two further electro-optic effects of type (b) were theoretically predicted to exist [1] but have not, as yet, been experimentally observed.

Changes in absorption can have a strong effect on refractive index for wavelengths near the absorption edge, due to the Kramers–Kronig relation.

Using a less strict definition of the electro-optic effect allowing also electric fields oscillating at optical frequencies, one could also include nonlinear absorption (absorption depends on the light intensity) to category a) and the optical Kerr effect (refractive index depends on the light intensity) to category b). Combined with the photoeffect and photoconductivity, the electro-optic effect gives rise to the photorefractive effect.

The term "electro-optic" is often erroneously used as a synonym for "optoelectronic".

Main applications[edit]

Electro-optic modulators[edit]

Electro-optic modulators are usually built with electro-optic crystals exhibiting the Pockels effect. The transmitted beam is phase modulated with the electric signal applied to the crystal. Amplitude modulators can be built by putting the electro-optic crystal between two linear polarizers or in one path of a Mach–Zehnder interferometer. Additionally, Amplitude modulators can be constructed by deflecting the beam into and out of a small aperture such as a fiber. This design can be low loss (<3 dB) and polarization independent depending on the crystal configuration.

Electro-optic deflectors[edit]

Electro-optic deflectors utilize prisms of electro-optic crystals. The index of refraction is changed by the Pockels effect, thus changing the direction of propagation of the beam inside the prism. Electro-optic deflectors have only a small number of resolvable spots, but possess a fast response time. There are few commercial models available at this time. This is because of competing acousto-optic deflectors, the small number of resolvable spots and the relatively high price of electro-optic crystals.


  1. ^ F. Castles "Linear electro-optic effects due to high-order spatial dispersion," Phys. Rev. A 92, 063804 (2015)

 This article incorporates public domain material from the General Services Administration document "Federal Standard 1037C" (in support of MIL-STD-188).

External links[edit]