Electron-capture dissociation

From Wikipedia, the free encyclopedia
  (Redirected from Electron capture dissociation)
Jump to: navigation, search

Electron-capture dissociation (ECD) is a method of fragmenting gas-phase ions for tandem mass-spectrometric analysis (structural elucidation). ECD involves the direct introduction of low-energy electrons to trapped gas-phase ions.[1][2] It was developed by Roman Zubarev and Neil Kelleher while in Fred McLafferty's lab at Cornell University.


Electron-capture dissociation typically involves a multiply protonated molecule M interacting with a free electron to form an odd-electron ion:


Liberation of the electric potential energy results in fragmentation of the product ion.

ECD produces significantly different types of fragment ions (although primarily c- and z-type, b-ions have been identified in ECD[3]) than other MS/MS fragmentation methods such as electron-detachment dissociation (EDD) (primarily a and x types),[4][5][6][7][8] collision-induced dissociation (CID) (primarily b[9] and y type) and infrared multiphoton dissociation. CID and IRMPD introduce internal vibrational energy in some way or another, causing loss of post-translational modifications during fragmentation. In ECD (and in EDD as well), fragments retain post-translational modifications such as phosphorylation[10][11][12] and O-glycosylation.[13][14] In ECD, unique fragments (and complementary to CID) are observed,[15] and the ability to fragment whole macromolecules effectively has been promising. The low fragmentation efficiencies and other experimental difficulties, which are being studied,[16] have prevented widespread use. Although ECD is primarily used in Fourier transform ion cyclotron resonance mass spectrometry,[17] investigators have indicated that it has been successfully used in an ion-trap mass spectrometer.[18][19][20]

ECD is a recently introduced MS/MS fragmentation technique and is still being investigated.[21][22] The mechanism of ECD is still under debate but appears not to necessarily break the weakest bond and is therefore thought to be a fast process (nonergodic) where energy is not free to relax intramolecularly. Suggestions have been made that radical reactions initiated by the electron may be responsible for the action of ECD.[23]

In a similar MS/MS fragmentation technique called electron-transfer dissociation the electrons are transferred by collision between the analyte cations and reagent anions.[24][25][26] [27]

See also[edit]


  1. ^ Zubarev R. A.; Kelleher N. L.; McLafferty F. W. (1998). "Electron capture dissociation of multiply charged protein cations. A nonergodic process". J. Am. Chem. Soc. 120 (13): 3265–66. doi:10.1021/ja973478k. 
  2. ^ McLafferty, F.; Horn, D. M.; Breuker, K.; Ge, Y.; Lewis, M. A.; Cerda, B.; Zubarev, R. A.; Carpenter, B. K. (2001). "Electron capture dissociation of gaseous multiply charged ions by fourier-transform ion cyclotron resonance". Journal of the American Society for Mass Spectrometry. 12 (3): 245–9. doi:10.1016/S1044-0305(00)00223-3. PMID 11281599. 
  3. ^ Liu, H. & Håkansson, K. J Am Soc Mass Spectrom (2007) 18: 2007. doi:10.1016/j.jasms.2007.08.015; Haselmann and Schmidt, RCM 21:1003-1008, 2007; Cooper JASMS 16:1932-1940, 2005.
  4. ^ Anusiewicz I.; Jasionowski M.; Skurski P.; Simons J. (December 2005). "Backbone and side-chain cleavages in electron detachment dissociation (EDD)". J. Phys. Chem. A. 109 (49): 11332–7. Bibcode:2005JPCA..10911332A. doi:10.1021/jp055018g. PMID 16331920. 
  5. ^ Leach F. E.; Wolff J. J.; Laremore T. N.; Linhardt R. J.; Amster I. J. (October 2008). "EVALUATION OF THE EXPERIMENTAL PARAMETERS WHICH CONTROL ELECTRON DETACHMENT DISSOCIATION, AND THEIR EFFECT ON THE FRAGMENTATION EFFICIENCY OF GLYCOSAMINOGLYCAN CARBOHYDRATES". Int. J. Mass Spectrom. 276 (2-3): 110–115. Bibcode:2008IJMSp.276..110L. doi:10.1016/j.ijms.2008.05.017. PMC 2633944Freely accessible. PMID 19802340. 
  6. ^ Kjeldsen F.; Silivra O. A.; Ivonin I. A.; Haselmann K. F.; Gorshkov M.; Zubarev R. A. (March 2005). "C alpha-C backbone fragmentation dominates in electron detachment dissociation of gas-phase polypeptide polyanions" (PDF). Chem. Eur. J. 11 (6): 1803–12. doi:10.1002/chem.200400806. PMID 15672435. 
  7. ^ McFarland M. A.; Marshall A. G.; Hendrickson C. L.; Nilsson C. L.; Fredman P.; Månsson J. E. (May 2005). "Structural characterization of the GM1 ganglioside by infrared multiphoton dissociation, electron capture dissociation, and electron detachment dissociation electrospray ionization FT-ICR MS/MS". J. Am. Soc. Mass Spectrom. 16 (5): 752–62. doi:10.1016/j.jasms.2005.02.001. PMID 15862776. 
  8. ^ Wolff J. J.; Laremore T. N.; Busch A. M.; Linhardt R. J.; Amster I. J. (June 2008). "Influence of charge state and sodium cationization on the electron detachment dissociation and infrared multiphoton dissociation of glycosaminoglycan oligosaccharides". J. Am. Soc. Mass Spectrom. 19 (6): 790–8. doi:10.1016/j.jasms.2008.03.010. PMC 2467392Freely accessible. PMID 18499037. 
  9. ^ Harrison A. G. (2009). "To b or not to b: the ongoing saga of peptide b ions". Mass Spectrom. Rev. 28 (4): 640–54. Bibcode:2009MSRv...28..640H. doi:10.1002/mas.20228. PMID 19338048. 
  10. ^ Creese & Cooper, JASMS 19:1263-1274, 2008.
  11. ^ Shi et al., Anal. Chem., 73:19–22, 2001.
  12. ^ Woodling et al., JASMS 18:2137–2145, 2007.
  13. ^ Mirgorodskaya et al., Anal. Chem. 71:4431–4436, 1999.
  14. ^ Renfrow et al., JBC 280:19136–19145, 2005.
  15. ^ Creese & Cooper JASMS 18:891–897, 2007.
  16. ^ Gorshkov et al., IJMS 234:131–136, 2004.
  17. ^ Cooper H. J.; Håkansson K.; Marshall A. G. (2005). "The role of electron capture dissociation in biomolecular analysis". Mass spectrometry reviews. 24 (2): 201–22. Bibcode:2005MSRv...24..201C. doi:10.1002/mas.20014. PMID 15389856. 
  18. ^ Baba et al., Anal. Chem., 76:4263–4266, 2004.
  19. ^ Ding & Brancia, Anal. Chem. 78:1995–2000, 2006.
  20. ^ Deguchi et al., Rapid Communications in Mass Spectrometry 21: 691–698, 2007.
  21. ^ Syrstad E. A.; Turecek F. (2005). "Toward a general mechanism of electron capture dissociation". J. Am. Soc. Mass Spectrom. 16 (2): 208–24. doi:10.1016/j.jasms.2004.11.001. PMID 15694771. 
  22. ^ Savitski M. M.; Kjeldsen F.; Nielsen M. L.; Zubarev R. A. (2006). "Complementary sequence preferences of electron-capture dissociation and vibrational excitation in fragmentation of polypeptide polycations". Angew. Chem. Int. Ed. Engl. 45 (32): 5301–3. doi:10.1002/anie.200601240. PMID 16847865. 
  23. ^ Leymarie N.; Costello C. E.; OConnor P. B. (2003). "Electron Capture Dissociation Initiates a Free Radical Reaction Cascade". J. Am. Chem. Soc. 125 (29): 8949–8958. doi:10.1021/ja028831n. PMID 12862492. 
  24. ^ Coon et al., JASMS 16:880–882, 2005.
  25. ^ Zubarev RA, Zubarev AR, Savitski MM (2008). "Electron capture/transfer versus collisionally activated/induced dissociations: solo or duet?". J. Am. Soc. Mass Spectrom. 19 (6): 753–61. doi:10.1016/j.jasms.2008.03.007. PMID 18499036. 
  26. ^ Hamidane, Hisham Ben; Chiappe, Diego; Hartmer, Ralf; Vorobyev, Aleksey; Moniatte, Marc; Tsybin, Yury O. (2009). "Electron capture and transfer dissociation: Peptide structure analysis at different ion internal energy levels". Journal of the American Society for Mass Spectrometry. 20 (4): 567–575. doi:10.1016/j.jasms.2008.11.016. ISSN 1044-0305. 
  27. ^ Bakhtiar R.; Guan Z. (July 2006). "Electron capture dissociation mass spectrometry in characterization of peptides and proteins". Biotechnol. Lett. 28 (14): 1047–59. doi:10.1007/s10529-006-9065-z. PMID 16794768.