Elementary matrix
In mathematics, an elementary matrix is a matrix which differs from the identity matrix by one single elementary row operation. The elementary matrices generate the general linear group of invertible matrices. Left multiplication (pre-multiplication) by an elementary matrix represents elementary row operations, while right multiplication (post-multiplication) represents elementary column operations.
Elementary row operations are used in Gaussian elimination to reduce a matrix to row echelon form. They are also used in Gauss-Jordan elimination to further reduce the matrix to reduced row echelon form.
Contents
Elementary row operations[edit]
There are three types of elementary matrices, which correspond to three types of row operations (respectively, column operations):
- Row switching
- A row within the matrix can be switched with another row.
- Row multiplication
- Each element in a row can be multiplied by a non-zero constant.
- Row addition
- A row can be replaced by the sum of that row and a multiple of another row.
If E is an elementary matrix, as described below, to apply the elementary row operation to a matrix A, one multiplies A by the elementary matrix on the left, EA. The elementary matrix for any row operation is obtained by executing the operation on the identity matrix.
Row-switching transformations[edit]
The first type of row operation on a matrix A switches all matrix elements on row i with their counterparts on row j. The corresponding elementary matrix is obtained by swapping row i and row j of the identity matrix.
So TijA is the matrix produced by exchanging row i and row j of A.
Properties[edit]
- The inverse of this matrix is itself: Tij−1 = Tij.
- Since the determinant of the identity matrix is unity, det[Tij] = −1. It follows that for any square matrix A (of the correct size), we have det[TijA] = −det[A].
Row-multiplying transformations[edit]
The next type of row operation on a matrix A multiplies all elements on row i by m where m is a non-zero scalar (usually a real number). The corresponding elementary matrix is a diagonal matrix, with diagonal entries 1 everywhere except in the ith position, where it is m.
So Di(m)A is the matrix produced from A by multiplying row i by m.
Properties[edit]
- The inverse of this matrix is: Di(m)−1 = Di(1/m).
- The matrix and its inverse are diagonal matrices.
- det[Di(m)] = m. Therefore for a square matrix A (of the correct size), we have det[Di(m)A] = m det[A].
Row-addition transformations[edit]
The final type of row operation on a matrix A adds row i multiplied by a scalar m to row j. The corresponding elementary matrix is the identity matrix but with an m in the (j, i) position.
So Lij(m)A is the matrix produced from A by adding m times row i to row j.
Properties[edit]
- These transformations are a kind of shear mapping, also known as a transvections.
- Lij(m)−1 = Lij(−m) (inverse matrix).
- The matrix and its inverse are triangular matrices.
- det[Lij(m)] = 1. Therefore, for a square matrix A (of the correct size) we have det[Lij(m)A] = det[A].
- Row-addition transforms satisfy the Steinberg relations.
See also[edit]
- Gaussian elimination
- Linear algebra
- System of linear equations
- Matrix (mathematics)
- LU decomposition
- Frobenius matrix
References[edit]
- Axler, Sheldon Jay (1997), Linear Algebra Done Right (2nd ed.), Springer-Verlag, ISBN 0-387-98259-0
- Lay, David C. (August 22, 2005), Linear Algebra and Its Applications (3rd ed.), Addison Wesley, ISBN 978-0-321-28713-7
- Meyer, Carl D. (February 15, 2001), Matrix Analysis and Applied Linear Algebra, Society for Industrial and Applied Mathematics (SIAM), ISBN 978-0-89871-454-8, archived from the original on 2009-10-31
- Poole, David (2006), Linear Algebra: A Modern Introduction (2nd ed.), Brooks/Cole, ISBN 0-534-99845-3
- Anton, Howard (2005), Elementary Linear Algebra (Applications Version) (9th ed.), Wiley International
- Leon, Steven J. (2006), Linear Algebra With Applications (7th ed.), Pearson Prentice Hall