Elongated pentagonal gyrobirotunda

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search
Elongated pentagonal gyrobirotunda
Elongated pentagonal gyrobirotunda.png
J42 - J43 - J44
Faces10+10 triangles
10 squares
2+10 pentagons
Vertex configuration20(3.42.5)
Symmetry groupD5d
Dual polyhedron-
Johnson solid 43 net.png

In geometry, the elongated pentagonal gyrobirotunda is one of the Johnson solids (J43). As the name suggests, it can be constructed by elongating a "pentagonal gyrobirotunda," or icosidodecahedron (one of the Archimedean solids), by inserting a decagonal prism between its congruent halves. Rotating one of the pentagonal rotundae (J6) through 36 degrees before inserting the prism yields an elongated pentagonal orthobirotunda (J42).

A Johnson solid is one of 92 strictly convex polyhedra that have regular faces but are not uniform (that is, they are not Platonic solids, Archimedean solids, prisms, or antiprisms). They were named by Norman Johnson, who first listed these polyhedra in 1966.[1]


The following formulae for volume and surface area can be used if all faces are regular, with edge length a:[2]


  1. ^ Johnson, Norman W. (1966), "Convex polyhedra with regular faces", Canadian Journal of Mathematics, 18: 169–200, doi:10.4153/cjm-1966-021-8, MR 0185507, Zbl 0132.14603.
  2. ^ Stephen Wolfram, "Elongated pentagonal gyrobirotunda" from Wolfram Alpha. Retrieved July 26, 2010.

External links[edit]