From Wikipedia, the free encyclopedia
Jump to: navigation, search

An endophyte is an endosymbiont, often a bacterium or fungus, that lives within a plant for at least part of its life cycle without causing apparent disease.[1][2][3] Endophytes are ubiquitous and have been found in all species of plants studied to date; however, most of the endophyte/plant relationships are not well understood.[4][5][6][7] Endophytes are also known to occur within lichens[8] and algae.[9][10] Many economically important grasses (e.g., Festuca spp. and Lolium spp.) carry fungal endophytes in genus Epichloë,[11][12][13] some of which may enhance host growth,[14] nutrient acquisition[15] and may improve the plant's ability to tolerate abiotic stresses, such as drought, and enhance resistance to insects, plant pathogens and mammalian herbivores.[16][17][18]


Endophytes may be transmitted either vertically (directly from parent to offspring) or horizontally (among individuals).[19] Vertically transmitted fungal endophytes are typically considered clonal and transmit via fungal hyphae penetrating the embryo within the host’s seeds (e.g., seed transmitting forms of Epichloë).[20][21][22] Conversely, reproduction through asexual or sexual spores leads to horizontal transmission, where endophytes may spread between plants in a population or community.[23] Some endophytes that frequently transmit vertically may also produce spores on plants that can be transmitted horizontally (e.g., Epichloë festucae).[24][25][26] Some of the Epichloë endophytes have been found to produce a cryptic but infective conidial state on the surfaces of leaf blades.[23][27][28] However, the extent to which endophytes rely on these cryptic conidia for horizontal transmission is still unknown. Some endophytic fungi are actually latent pathogens or saprotrophs that only become active and reproduce under specific environmental conditions or when their host plants are stressed or begin to senesce.[29][30]

Endophyte-Host Interactions[edit]

Endophytes may benefit host plants by preventing pathogenic or parasitic organisms from colonizing them.[31][32] Extensive colonization of the plant tissue by endophytes creates a "barrier effect", where the local endophytes outcompete and prevent pathogenic organisms from taking hold.[33] Endophytes may also produce chemicals which inhibit the growth of competitors, including pathogenic organisms.[34][35][36] Endophytes are also known to increase expression of defense-related genes in plants, making plants more resistant to many potential pathogens.[37][38][39] Some fungal and bacterial endophytes have proven to increase plant growth and improve overall plant hardiness.[40][41][42] The presence of fungal endophytes can cause higher rates of water loss in leaves.[43] However, certain microbial endophytes may also help plants to tolerate biotic stress such as root herbivory[44] or abiotic stresses, including salt, drought or heat stresses.[45][46][47] Endophytes have also been shown to enhance plant development and increase nutrient (phosphorus and nitrogen) uptake into plants.[48][49][50][51][52] Endophyte-related host benefits are common phenomena, and have been the focus of much research, particularly among the grass endophytes (see below). In spite of the many reports of beneficial effects of endophytes it has come to be understood that the relationship between endophytes and hosts may be considered a balanced antagonism with both positive and negative effects on hosts depending on the environmental conditions.[53][54] Redman et al. advanced the hypothesis of 'habitat adapted symbiosis' where plants are proposed to associate with particular endophytes that increase tolerance or resistance to the predominant biotic or abiotic stresses of their habitats.[45][55] Fungal and bacterial endophytes may comprise functional communities in plants that increase a plant's capacity to survive and thrive in its habitat.[56][57][58]

Endophytes for Medicinal and Industrial Applications[edit]

The wide range of compounds produced by endophytes have been shown to combat pathogens and even cancers in animals including humans.[59] One notable endophyte with medicinal benefits to humans was discovered by Gary Strobel: Pestalotiopsis microspora, an endophytic fungus of Taxus wallachiana (Himalayan Yew) was found to produce taxol.[60] Also it was found that the endophytic fungus Aspergillus flavus from Solanum nigrum can produce solamargine.[61] Endophytes are also being investigated for roles in biofuels production.[62][63] Inoculating plants with certain endophytes may provide increased disease or parasite resistance [64][37][65] while others may possess metabolic processes that convert cellulose and other carbon sources into "myco-diesel" hydrocarbons and hydrocarbon derivatives.[66]

Endophytes for Agricultural Applications[edit]

Among the many promising applications of endophytic microbes are those intended to increase agricultural use of endophytes to produce crops that grow faster and are more resistant and hardier than crops lacking endophytes.[67][68][69][70][71] Epichloë endophytes are being widely used commercially in turf grasses to enhance the performance of the turf and its resistance to biotic and abiotic stresses.[72][73] Piriformospora indica is an interesting endophytic fungus of the order Sebacinales, the fungus is capable of colonising roots and forming symbiotic relationship with many plants.[74] P. indica symbiosis has been shown to increase crop yield for a variety of crops (barley, tomato, maize etc.) and provide a measure of protection against pathogens and abiotic stresses.[75][76] Recent evidence suggests that communities of bacterial and fungal endophytes may work in functional consortia to promote growth and protect plants in natural populations; while plants in intensive cultivation may lose these defensive and growth promotional microbiome components.[77] Some scientists propose that restoration of defensive and growth promotional endophytes in agricultural crops could result in reduction of agrochemical inputs to control pests and diseases and result in crops that would better tolerate droughts and other stresses.[55][78] There is some evidence that some bacterial endophytes may establish symbiosis with both plants and animals.[79][80][81] This raises the possibility that crops could one day be produced that carry probiotic endophytes to enhance human health.

The Search for Endophytes[edit]

It is speculated that there may be many thousands of endophytes useful to mankind but since there are few scientists working in this field, and since environmental contamination, deforestation and biodiversity loss are widespread, many endophytes might be permanently lost before their utility is explored.[82][83]

Endophytic species are very diverse; only a small minority of existing endophytes have been characterized.[84] A single plant organ (leaf, stem or root) of a plant can harbor many different species of endophytes, both bacterial and fungal.[85][86][87] Additionally, some endophytic bacteria may live within endophytic fungi.[88]

Endophytes can be identified in several ways, usually through amplifying and sequencing a small piece of DNA.[89] Some endophytes can be cultured from a piece of their host plant in an appropriate growth medium.[90] An important step in culturing endophytes is to surface disinfect plant tissues prior to placement on culture media.[91][92] This kills epiphytic microbes, ensuring only growth of endophytic microbes. Not all endophytes can be cultured in this way, as shown by discovery of cryptic, unculturable endophyte species through DNA based analysis of leaf tissue.[93] Some grass endophytes in genus Epichloë can be seen as intercellular sinuous strands of hyphae under the microscope following leaf sheath or culm tissue staining with aniline blue.[91][94] Many endophytes do not sporulate when cultured.[95] Since fungal identification by morphology is based primarily on spore-bearing structures, this fact makes visual identification of some endophytic cultures challenging.

Diversity of Fungal Endophytes[edit]

Fungal endophytes are generally from the phylum Ascomycota, though other phyla are represented.[96][97] Some specific examples of which are found in orders Hypocreales and Xylariales of the Sordariomycetes (Pyrenomycetes) class.[98] Additionally the class of Loculoascomycetes includes endophytes.[99] Although endophytes may be diverse taxonomically, Rodriguez et al. classified fungal endophytes broadly into ecological categories or functional classes.[100]

Diversity of Algal Endophytes[edit]

A number of endophytes are now known that grow within seaweeds and algae.[9] One such example is Ulvella leptochaete, which has recently been discovered from host algae including Cladophora and Laurentia from India.[101]

Diversity of Bacterial Endophytes[edit]

Bacterial endophytes may belong to a broad range of taxa, including α-Proteobacteria, β-Proteobacteria, γ-Proteobacteria, Firmicutes, Actinobacteria, etc...[102][103] Bacterial endophytes have been found to become intracellular in root and shoot cells of many plants, with entry into cells in the meristems.[52][104] In this intracellular form bacteria lose cell walls but continue to divide and metabolize.[104][105] These wall-less intracellular forms of bacteria are called L-forms.[106] Paungfoo-Lonhienne et al. observed the degradation of intracellular microbes within root cells and hypothesized that intracellular microbes may be a source of organic nutrients or vitamins for plants; they termed this process 'rhizophagy'.[107]

See also[edit]


  1. ^ Stone, J.; Bacon, C; White, J. (1999). Bacon, C and White, J., ed. An overview of endophytic microbes: endophytism defined. Chapter in book: Microbial Endophytes. Marcell-Dekker. pp. 29–33. ISBN 0-8247-8831-1. 
  2. ^ Clay, Keith; Schardl, Christopher (2002-10-01). "Evolutionary Origins and Ecological Consequences of Endophyte Symbiosis with Grasses.". The American Naturalist. 160 (S4): S99–S127. doi:10.1086/342161. PMID 18707456. 
  3. ^ Hardoim, Pablo R.; Overbeek, Leonard S. van; Berg, Gabriele; Pirttilä, Anna Maria; Compant, Stéphane; Campisano, Andrea; Döring, Matthias; Sessitsch, Angela (2015-09-01). "The Hidden World within Plants: Ecological and Evolutionary Considerations for Defining Functioning of Microbial Endophytes". Microbiology and Molecular Biology Reviews. 79 (3): 293–320. doi:10.1128/MMBR.00050-14. ISSN 1092-2172. PMC 4488371free to read. PMID 26136581. 
  4. ^ Faeth, Stanley H. (2002). "Are endophytic fungi defensive plant mutualists?". Oikos. 98 (1): 25–36. doi:10.1034/j.1600-0706.2002.980103.x. JSTOR 3547609. 
  5. ^ White, James F., Jr.; Morrow, Angela C.; Morgan-Jones, Gareth (1990-03-01). "Endophyte-Host Associations in Forage Grasses. XII. A Fungal Endophyte of Trichachne insularis Belonging to Pseudocercosporella". Mycologia. 82 (2): 218–226. doi:10.2307/3759850. JSTOR 3759850. 
  6. ^ Saunders, Megan; Glenn, Anthony E.; Kohn, Linda M. (2010-09-01). "Exploring the evolutionary ecology of fungal endophytes in agricultural systems: using functional traits to reveal mechanisms in community processes". Evolutionary Applications. 3 (5-6): 525–537. doi:10.1111/j.1752-4571.2010.00141.x. ISSN 1752-4571. PMC 3352505free to read. PMID 25567944. 
  7. ^ Suryanarayanan, Trichur S. (2013-12-01). "Endophyte research: going beyond isolation and metabolite documentation". Fungal Ecology. 6 (6): 561–568. doi:10.1016/j.funeco.2013.09.007. 
  8. ^ Grube, Martin; Cardinale, Massimiliano; de Castro, João Vieira; Müller, Henry; Berg, Gabriele (2009-06-25). "Species-specific structural and functional diversity of bacterial communities in lichen symbioses". The ISME Journal. 3 (9): 1105–1115. doi:10.1038/ismej.2009.63. ISSN 1751-7362. 
  9. ^ a b Flewelling, Andrew J.; Ellsworth, Katelyn T.; Sanford, Joseph; Forward, Erica; Johnson, John A.; Gray, Christopher A. (2013-12-13). "Macroalgal Endophytes from the Atlantic Coast of Canada: A Potential Source of Antibiotic Natural Products?". Microorganisms. 1 (1): 175–187. doi:10.3390/microorganisms1010175. 
  10. ^ Peters, A. F., et al. "Molecular identification, distribution and taxonomy of brown algal endophytes, with emphasis on species from Antarctica." Proceedings of the 17th International Seaweed Symposium, Cape Town, South Africa, 28 January-2 February 2001.. Oxford University Press, 2003.
  11. ^ White, J. F. (1987-01-01). "Widespread Distribution of Endophytes in the Poaceae". Plant Disease. 71 (4): 340. doi:10.1094/pd-71-0340. 
  12. ^ Leyronas, C; Raynal, G (2001-08-01). "Presence of Neotyphodium-like endophytes in European grasses". Annals of Applied Biology. 139 (1): 119–127. doi:10.1111/j.1744-7348.2001.tb00136.x. ISSN 1744-7348. 
  13. ^ Iannone, Leopoldo J.; Jr, James F. White; Giussani, Liliana M.; Cabral, Daniel; Novas, María Victoria (2010-04-10). "Diversity and distribution of Neotyphodium-infected grasses in Argentina". Mycological Progress. 10 (1): 9–19. doi:10.1007/s11557-010-0669-2. ISSN 1617-416X. 
  14. ^ Nassar, Amr H.; El-Tarabily, Khaled A.; Sivasithamparam, Krishnapillai (November 2005). "Promotion of plant growth by an auxin-producing isolate of the yeast Williopsis saturnus endophytic in maize (Zea mays L.) roots". Biology and Fertility of Soils. 42 (2): 97–108. doi:10.1007/s00374-005-0008-y. 
  15. ^ Vázquez-de-Aldana, Beatriz R.; García-Ciudad, Antonia; García-Criado, Balbino; Vicente-Tavera, Santiago; Zabalgogeazcoa, Iñigo (2013-12-18). "Fungal Endophyte (Epichloë festucae) Alters the Nutrient Content of Festuca rubra Regardless of Water Availability". PLoS ONE. 8 (12): e84539. doi:10.1371/journal.pone.0084539. PMC 3867530free to read. PMID 24367672. 
  16. ^ Clay, Keith (February 1988). "Fungal Endophytes of Grasses: A Defensive Mutualism between Plants and Fungi". Ecology. 69 (1): 10–6. doi:10.2307/1943155. JSTOR 1943155. 
  17. ^ Cheplick, G. P. and S. H. Faeth. 2009. Ecology and Evolution of the Grass-Endophyte Symbiosis. Oxford University Press, Oxford.
  18. ^ Kuldau, G.; Bacon, C. (2008-07-01). "Clavicipitaceous endophytes: Their ability to enhance resistance of grasses to multiple stresses". Biological Control. Special Issue: Endophytes. 46 (1): 57–71. doi:10.1016/j.biocontrol.2008.01.023. 
  19. ^ Carroll, George (February 1988). "Fungal Endophytes in Stems and Leaves: From Latent Pathogen to Mutualistic Symbiont". Ecology. 69 (1): 2–9. doi:10.2307/1943154. JSTOR 1943154. 
  20. ^ White, J.F.; Morgan-Jones, G.; Morrow, A.C. (1993-01-01). "Taxonomy, life cycle, reproduction and detection of Acremonium endophytes". Agriculture, Ecosystems & Environment. 44 (1-4): 13–37. doi:10.1016/0167-8809(93)90037-p. 
  21. ^ Johnston-Monje, David; Raizada, Manish N. (2011-06-03). "Conservation and Diversity of Seed Associated Endophytes in Zea across Boundaries of Evolution, Ethnography and Ecology". PLoS ONE. 6 (6): e20396. doi:10.1371/journal.pone.0020396. PMC 3108599free to read. PMID 21673982. 
  22. ^ Gundel, Pedro E.; Batista, William B.; Texeira, Marcos; Martínez-Ghersa, M. Alejandra; Omacini, Marina; Ghersa, Claudio M. (2008-04-22). "Neotyphodium endophyte infection frequency in annual grass populations: relative importance of mutualism and transmission efficiency". Proceedings of the Royal Society of London B: Biological Sciences. 275 (1637): 897–905. doi:10.1098/rspb.2007.1494. ISSN 0962-8452. PMC 2600900free to read. PMID 18198146. 
  23. ^ a b Tadych, Mariusz; Bergen, Marshall S.; White, James F. (2014-03-01). "Epichloë spp. associated with grasses: new insights on life cycles, dissemination and evolution". Mycologia. 106 (2): 181–201. doi:10.3852/106.2.181. ISSN 0027-5514. 
  24. ^ White, James F., Jr. (1988-07-01). "Endophyte-Host Associations in Forage Grasses. XI. A Proposal concerning Origin and Evolution". Mycologia. 80 (4): 442–446. doi:10.2307/3807845. JSTOR 3807845. 
  25. ^ Tintjer, Tammy; Leuchtmann, Adrian; Clay, Keith (2008-07-01). "Variation in horizontal and vertical transmission of the endophyte Epichloë elymi infecting the grass Elymus hystrix". New Phytologist. 179 (1): 236–246. doi:10.1111/j.1469-8137.2008.02441.x. ISSN 1469-8137. 
  26. ^ Chung, K. -R.; Schardl, C. L. (1997-03-01). "Sexual cycle and horizontal transmission of the grass symbiont, Epichloë typhina". Mycological Research. 101 (3): 295–301. doi:10.1017/S0953756296002602. 
  27. ^ Tadych, Mariusz; Bergen, Marshall; Dugan, Frank M.; White Jr., James F. (2007-04-01). "Evaluation of the potential role of water in spread of conidia of the Neotyphodium endophyte of Poa ampla". Mycological Research. 111 (4): 466–472. doi:10.1016/j.mycres.2007.02.002. 
  28. ^ White, James F., Jr.; Martin, Tyler I.; Cabral, Daniel (1996-03-01). "Endophyte-Host Associations in Grasses. XXII. Conidia Formation by Acremonium Endophytes on the Phylloplanes of Agrostis hiemalis and Poa rigidifolia". Mycologia. 88 (2): 174–178. doi:10.2307/3760920. JSTOR 3760920. 
  29. ^ Petrini, Orlando (1991). "Fungal Endophytes of Tree Leaves". In Andrews, John H.; Hirano, Susan S. Microbial Ecology of Leaves. Brock/Springer Series in Contemporary Bioscience. pp. 179–97. doi:10.1007/978-1-4612-3168-4_9. ISBN 978-1-4612-7822-1. 
  30. ^ Álvarez-Loayza, Patricia; White, James F. , Jr; Torres, Mónica S.; Balslev, Henrik; Kristiansen, Thea; Svenning, Jens-Christian; Gil, Nathalie (2011-01-31). "Light Converts Endosymbiotic Fungus to Pathogen, Influencing Seedling Survival and Niche-Space Filling of a Common Tropical Tree, Iriartea deltoidea". PLoS ONE. 6 (1): e16386. doi:10.1371/journal.pone.0016386. PMC 3031546free to read. PMID 21305008. 
  31. ^ Martinuz, A.; Schouten, A.; Sikora, R. A. (2011-09-07). "Systemically Induced Resistance and Microbial Competitive Exclusion: Implications on Biological Control". Phytopathology. 102 (3): 260–266. doi:10.1094/PHYTO-04-11-0120. ISSN 0031-949X. 
  32. ^ Zabalgogeazcoa, I. (2008-02-01). "Fungal endophytes and their interaction with plant pathogens: a review". Spanish Journal of Agricultural Research. 6 (S1): 138–146. doi:10.5424/sjar/200806S1-382. ISSN 2171-9292. 
  33. ^ Moy, Melinda; et al. (2000). "Identification of epiphyllous mycelial nets on leaves of grasses infected by clavicipitaceous endophytes". Symbiosis. 28: 291–302. 
  34. ^ Schardl, Christopher L.; Young, Carolyn A.; Pan, Juan; Florea, Simona; Takach, Johanna E.; Panaccione, Daniel G.; Farman, Mark L.; Webb, Jennifer S.; Jaromczyk, Jolanta (2013-06-06). "Currencies of Mutualisms: Sources of Alkaloid Genes in Vertically Transmitted Epichloae". Toxins. 5 (6): 1064–1088. doi:10.3390/toxins5061064. PMC 3717770free to read. PMID 23744053. 
  35. ^ Soares, Marcos Antônio; Li, Hai-Yan; Bergen, Marshall; Silva, Joaquim Manoel da; Kowalski, Kurt P.; White, James Francis (2015-08-22). "Functional role of an endophytic Bacillus amyloliquefaciens in enhancing growth and disease protection of invasive English ivy (Hedera helix L.)". Plant and Soil: 1–17. doi:10.1007/s11104-015-2638-7. ISSN 0032-079X. 
  36. ^ Yue, Qin; Miller, Christina J.; White, , James F.; Richardson, Michael D. (2000-10-01). "Isolation and Characterization of Fungal Inhibitors from Epichloë festucae". Journal of Agricultural and Food Chemistry. 48 (10): 4687–4692. doi:10.1021/jf990685q. ISSN 0021-8561. 
  37. ^ a b Gond, Surendra K.; Bergen, Marshall S.; Torres, Mónica S.; White Jr, James F. (2015-03-01). "Endophytic Bacillus spp. produce antifungal lipopeptides and induce host defence gene expression in maize". Microbiological Research. 172: 79–87. doi:10.1016/j.micres.2014.11.004. 
  38. ^ Loon, L. C. Van; Bakker, P. a. H. M. (2005-01-01). Siddiqui, Zaki A., ed. Induced Systemic Resistance as a Mechanism of Disease Suppression by Rhizobacteria. Springer Netherlands. pp. 39–66. doi:10.1007/1-4020-4152-7_2. ISBN 978-1-4020-4002-3. 
  39. ^ Gómez-Lama Cabanás, Carmen; Schilirò, Elisabetta; Valverde-Corredor, Antonio; Mercado-Blanco, Jesús (2014-01-01). "The biocontrol endophytic bacterium Pseudomonas fluorescens PICF7 induces systemic defense responses in aerial tissues upon colonization of olive roots". Plant Biotic Interactions. 5: 427. doi:10.3389/fmicb.2014.00427. PMC 4155815free to read. PMID 25250017. 
  40. ^ Hardoim, Pablo R.; van Overbeek, Leo S.; Elsas, Jan Dirk van (2008-01-10). "Properties of bacterial endophytes and their proposed role in plant growth". Trends in Microbiology. 16 (10): 463–471. doi:10.1016/j.tim.2008.07.008. ISSN 0966-842X. PMID 18789693. 
  41. ^ Reinhold-Hurek, Barbara; Hurek, Thomas (1998-01-04). "Life in grasses: diazotrophic endophytes". Trends in Microbiology. 6 (4): 139–144. doi:10.1016/S0966-842X(98)01229-3. ISSN 0966-842X. PMID 9587190. 
  42. ^ Dupont, Pierre-Yves; Eaton, Carla J.; Wargent, Jason J.; Fechtner, Susanne; Solomon, Peter; Schmid, Jan; Day, Robert C.; Scott, Barry; Cox, Murray P. (2015-08-01). "Fungal endophyte infection of ryegrass reprograms host metabolism and alters development". New Phytologist. 208: n/a–n/a. doi:10.1111/nph.13614. ISSN 1469-8137. 
  43. ^ White, James F.; Glenn, Anthony E.; Chandler, Kirk F. (1993-03-01). "Endophyte-Host Associations in Grasses. XVIII. Moisture Relations and Insect Herbivory of the Emergent Stromal Leaf of Epichloë". Mycologia. 85 (2): 195–202. doi:10.2307/3760456. JSTOR 3760456. 
  44. ^ Cosme, Marco; Lu, Jing; Erb, Matthias; Stout, Michael J.; Franken, Philipp; Wurst, Susanne (2016-02-25). "A fungal endophyte helps plants to tolerate root herbivory through changes in gibberellin and jasmonate signaling". New Phytologist. doi:10.1111/nph.13957. 
  45. ^ a b Rodriguez, Rusty J.; Henson, Joan; Van Volkenburgh, Elizabeth; Hoy, Marshal; Wright, Leesa; Beckwith, Fleur; Kim, Yong-Ok; Redman, Regina S. (2008-02-07). "Stress tolerance in plants via habitat-adapted symbiosis". The ISME Journal. 2 (4): 404–416. doi:10.1038/ismej.2007.106. ISSN 1751-7362. 
  46. ^ Redman, Regina; et al. (2002). "Thermotolerance Generated by Plant/Fungal Symbiosis". Science. doi:10.1126/science.1078055. 
  47. ^ Malinowski, Dariusz P.; Belesky, David P. (2000-01-01). "Adaptations of Endophyte-Infected Cool-Season Grasses to Environmental Stresses". Crop Science. 40 (4): 923. doi:10.2135/cropsci2000.404923x. 
  48. ^ White, James F.; Chen, Qiang; Torres, Mónica S.; Mattera, Robert; Irizarry, Ivelisse; Tadych, Mariusz; Bergen, Marshall (2015-01-01). "Collaboration between grass seedlings and rhizobacteria to scavenge organic nitrogen in soils". AoB Plants. 7: plu093. doi:10.1093/aobpla/plu093. ISSN 2041-2851. PMC 4313791free to read. PMID 25564515. 
  49. ^ Barrow, J. R.; Osuna, P. (2002-07-01). "Phosphorus solubilization and uptake by dark septate fungi in fourwing saltbush, Atriplex canescens (Pursh) Nutt". Journal of Arid Environments. 51 (3): 449–459. doi:10.1006/jare.2001.0925. 
  50. ^ Beltran-Garcia, Miguel J.; White, James F.; Jr.; Prado, Fernanda M.; Prieto, Katia R.; Yamaguchi, Lydia F.; Torres, Monica S.; Kato, Massuo J.; Medeiros, Marisa H. G. (2014-01-01). "Nitrogen acquisition in Agave tequilana from degradation of endophytic bacteria". Scientific Reports. 4: 6938. doi:10.1038/srep06938. PMC 4221784free to read. PMID 25374146. 
  51. ^ Puente, M. Esther; Li, Ching Y.; Bashan, Yoav (2009-09-01). "Rock-degrading endophytic bacteria in cacti". Environmental and Experimental Botany. 66 (3): 389–401. doi:10.1016/j.envexpbot.2009.04.010. 
  52. ^ a b Paungfoo-Lonhienne, Chanyarat; Rentsch, Doris; Robatzek, Silke; Webb, Richard I.; Sagulenko, Evgeny; Näsholm, Torgny; Schmidt, Susanne; Lonhienne, Thierry G. A. (2010-07-30). "Turning the Table: Plants Consume Microbes as a Source of Nutrients". PLoS ONE. 5 (7): e11915. doi:10.1371/journal.pone.0011915. PMC 2912860free to read. PMID 20689833. 
  53. ^ Schulz, Barbara; Römmert, Anne-Katrin; Dammann, Ulrike; Aust, Hans-JÜRgen; Strack, Dieter (1999-10-01). "The endophyte-host interaction: a balanced antagonism?". Mycological Research. 103 (10): 1275–1283. doi:10.1017/S0953756299008540. 
  54. ^ "FUNGAL ENDOPHYTES: A Continuum of Interactions with Host Plants". Annual Review of Ecology and Systematics. 29 (1): 319–343. 1998-01-01. doi:10.1146/annurev.ecolsys.29.1.319. 
  55. ^ a b Redman, Regina S.; Kim, Yong Ok; Woodward, Claire J. D. A.; Greer, Chris; Espino, Luis; Doty, Sharon L.; Rodriguez, Rusty J. (2011-07-05). "Increased Fitness of Rice Plants to Abiotic Stress Via Habitat Adapted Symbiosis: A Strategy for Mitigating Impacts of Climate Change". PLoS ONE. 6 (7): e14823. doi:10.1371/journal.pone.0014823. PMC 3130040free to read. PMID 21750695. 
  56. ^ Campisano, Andrea; Antonielli, Livio; Pancher, Michael; Yousaf, Sohail; Pindo, Massimo; Pertot, Ilaria (2014-11-11). "Bacterial Endophytic Communities in the Grapevine Depend on Pest Management". PLoS ONE. 9 (11): e112763. doi:10.1371/journal.pone.0112763. PMC 4227848free to read. PMID 25387008. 
  57. ^ Zambell, Christopher B.; White, James F. (2014-12-06). "In the forest vine Smilax rotundifolia, fungal epiphytes show site-wide spatial correlation, while endophytes show evidence of niche partitioning". Fungal Diversity: 1–19. doi:10.1007/s13225-014-0316-3. ISSN 1560-2745. 
  58. ^ Redman, Regina S.; Kim, Yong Ok; Woodward, Claire J. D. A.; Greer, Chris; Espino, Luis; Doty, Sharon L.; Rodriguez, Rusty J. (2011-07-05). "Increased Fitness of Rice Plants to Abiotic Stress Via Habitat Adapted Symbiosis: A Strategy for Mitigating Impacts of Climate Change". PLoS ONE. 6 (7): e14823. doi:10.1371/journal.pone.0014823. PMC 3130040free to read. PMID 21750695. 
  59. ^ Schulz, Barbara; Boyle, Christine; Draeger, Siegfried; Römmert, Anne-Katrin; Krohn, Karsten (2002-09-01). "Endophytic fungi: a source of novel biologically active secondary metabolites*". Mycological Research. 106 (9): 996–1004. doi:10.1017/S0953756202006342. 
  60. ^ Strobel G, Yang X, Sears J, Kramer R, Sidhu RS, Hess WM (February 1996). "Taxol from Pestalotiopsis microspora, an endophytic fungus of Taxus wallachiana". Microbiology. 142 (2): 435–40. doi:10.1099/13500872-142-2-435. PMID 8932715. 
  61. ^ El-Hawary, S.s.; Mohammed, R.; AbouZid, S.f.; Bakeer, W.; Ebel, R.; Sayed, A.m.; Rateb, M.e. (2016-04-01). "Solamargine production by a fungal endophyte of Solanum nigrum". Journal of Applied Microbiology. 120 (4): 900–911. doi:10.1111/jam.13077. ISSN 1365-2672. 
  62. ^ Stadler, Marc; Schulz, Barbara (2009-01-07). "High energy biofuel from endophytic fungi?". Trends in Plant Science. 14 (7): 353–355. doi:10.1016/j.tplants.2009.05.001. ISSN 1360-1385. PMID 19556159. 
  63. ^ Allen, Joshua W.; Scheer, Adam M.; Gao, Connie W.; Merchant, Shamel S.; Vasu, Subith S.; Welz, Oliver; Savee, John D.; Osborn, David L.; Lee, Changyoul (2014-03-01). "A coordinated investigation of the combustion chemistry of diisopropyl ketone, a prototype for biofuels produced by endophytic fungi". Combustion and Flame. Special Issue on Alternative Fuels. 161 (3): 711–724. doi:10.1016/j.combustflame.2013.10.019. 
  64. ^ "University of Rhode Island GreenShare Factsheets: Endopyhte-Enhanced Grasses". Archived from the original on 2006-03-12. Retrieved June 14, 2009. 
  65. ^ Wicklow, Donald T.; Roth, Shoshannah; Deyrup, Stephen T.; Gloer, James B. (2005-05-01). "A protective endophyte of maize: Acremonium zeae antibiotics inhibitory to Aspergillus flavus and Fusarium verticillioides1". Mycological Research. 109 (5): 610–618. doi:10.1017/S0953756205002820. 
  66. ^ Strobel GA, Knighton B, Kluck K, et al. (November 2008). "The production of myco-diesel hydrocarbons and their derivatives by the endophytic fungus Gliocladium roseum (NRRL 50072)". Microbiology. 154 (11): 3319–28. doi:10.1099/mic.0.2008/022186-0. PMID 18957585. 
  67. ^ Bacon, Charles W.; Hinton, Dorothy M. (2014-01-01). Verma, Vijay C.; Gange, Alan C., eds. Microbial Endophytes: Future Challenges. Springer India. pp. 441–451. doi:10.1007/978-81-322-1575-2_22. ISBN 978-81-322-1574-5. 
  68. ^ Gond, S.k.; Torres, M.s.; Bergen, M.s.; Helsel, Z.; White, J.f. (2015-04-01). "Induction of salt tolerance and up-regulation of aquaporin genes in tropical corn by rhizobacterium Pantoea agglomerans". Letters in Applied Microbiology. 60 (4): 392–399. doi:10.1111/lam.12385. ISSN 1472-765X. 
  69. ^ White, James; et al. (2014). "Occurrence of Bacillus amyloliquefaciens as a systemic endophyte of vanilla orchids". Microscopy Research and Technique. 77: 874–885. doi:10.1002/jemt.22410. 
  70. ^ Glassner, Hanoch; Zchori-Fein, Einat; Compant, Stéphane; Sessitsch, Angela; Katzir, Nurit; Portnoy, Vitaly; Yaron, Sima (2015-07-01). "Characterization of endophytic bacteria from cucurbit fruits with potential benefits to agriculture in melons (Cucumis melo L.)". FEMS Microbiology Ecology. 91 (7): fiv074. doi:10.1093/femsec/fiv074. ISSN 1574-6941. PMID 26183916. 
  71. ^ Compant, Stéphane; Clément, Christophe; Sessitsch, Angela (2010-05-01). "Plant growth-promoting bacteria in the rhizo- and endosphere of plants: Their role, colonization, mechanisms involved and prospects for utilization". Soil Biology and Biochemistry. 42 (5): 669–678. doi:10.1016/j.soilbio.2009.11.024. 
  72. ^ Bacon, C. W.; Richardson, M. D.; White, J. F. (1997-01-01). "Modification and Uses of Endophyte-Enhanced Turfgrasses: A Role for Molecular Technology". Crop Science. 37 (5): 1415. doi:10.2135/cropsci1997.0011183x003700050001x. 
  73. ^ Meyer, William; Torres, Monica; White, James (2012). Stier, J.; Horgan, B.; Bonos, S., eds. Chapter 20: Biology and Applications of Fungal Endophytes in Turfgrasses. In book: Agronomy Monograph 56. Turfgrass: Biology, Use, and Management. American Society of Agronomy. pp. Chapter 20. 
  74. ^ Verma, Savita; Varma, Ajit; Rexer, Karl-Heinz; Hassel, Annette; Kost, Gerhard; Sarbhoy, Ashok; Bisen, Prakash; Bütehorn, Britta; Franken, Philipp (1998-09-01). "Piriformospora indica, gen. et sp. nov., a New Root-Colonizing Fungus". Mycologia. 90 (5): 896–903. doi:10.2307/3761331. JSTOR 3761331. 
  75. ^ Varma A, Savita Verma, Sudha, Sahay N, Butehorn B, Franken P (June 1999). "Piriformospora indica, a cultivable plant-growth-promoting root endophyte". Applied and Environmental Microbiology. 65 (6): 2741–4. PMC 91405free to read. PMID 10347070. 
  76. ^ Waller F, Achatz B, Baltruschat H, et al. (September 2005). "The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield". Proceedings of the National Academy of Sciences of the United States of America. 102 (38): 13386–91. doi:10.1073/pnas.0504423102. PMC 1224632free to read. PMID 16174735. 
  77. ^ Santhanam, Rakesh; Luu, Van Thi; Weinhold, Arne; Goldberg, Jay; Oh, Youngjoo; Baldwin, Ian T. (2015-09-08). "Native root-associated bacteria rescue a plant from a sudden-wilt disease that emerged during continuous cropping". Proceedings of the National Academy of Sciences. 112 (36): E5013–E5020. doi:10.1073/pnas.1505765112. ISSN 0027-8424. PMC 4568709free to read. PMID 26305938. 
  78. ^ Sturz, A. V.; Christie, B. R.; Nowak, J. (2000-01-01). "Bacterial Endophytes: Potential Role in Developing Sustainable Systems of Crop Production". Critical Reviews in Plant Sciences. 19 (1): 1–30. doi:10.1080/07352680091139169. 
  79. ^ Campisano, Andrea; Ometto, Lino; Compant, Stéphane; Pancher, Michael; Antonielli, Livio; Yousaf, Sohail; Varotto, Claudio; Anfora, Gianfranco; Pertot, Ilaria (2014-05-01). "Interkingdom Transfer of the Acne-Causing Agent, Propionibacterium acnes, from Human to Grapevine". Molecular Biology and Evolution. 31 (5): 1059–1065. doi:10.1093/molbev/msu075. ISSN 0737-4038. PMID 24554779. 
  80. ^ Berg, Gabriele; Mahnert, Alexander; Moissl-Eichinger, Christine (2014-01-01). "Beneficial effects of plant-associated microbes on indoor microbiomes and human health?". Plant-Microbe Interaction. 5: 15. doi:10.3389/fmicb.2014.00015. PMC 3905206free to read. PMID 24523719. 
  81. ^ M S Torres, B. Waters; et al. (2015-01-01). "Do Bacillus endophytes and epiphytes of food plants colonize the human digestive tract?". doi:10.13140/RG.2.1.3134.7685. 
  82. ^ Smith, Stephen A.; Tank, David C.; Boulanger, Lori-Ann; Bascom-Slack, Carol A.; Eisenman, Kaury; Kingery, David; Babbs, Beatrice; Fenn, Kathleen; Greene, Joshua S. (2008-08-25). "Bioactive Endophytes Warrant Intensified Exploration and Conservation". PLoS ONE. 3 (8): e3052. doi:10.1371/journal.pone.0003052. PMC 2518837free to read. PMID 18725962. 
  83. ^ Kandalepas, Demetra; Blum, Michael J.; Van Bael, Sunshine A. (2015-04-29). "Shifts in Symbiotic Endophyte Communities of a Foundational Salt Marsh Grass following Oil Exposure from the Deepwater Horizon Oil Spill". PLoS ONE. 10 (4): e0122378. doi:10.1371/journal.pone.0122378. PMC 4414556free to read. PMID 25923203. 
  84. ^ L HAWKSWORTH, David. "The magnitude of fungal diversity: the 1· 5 million species estimate revisited." Mycological research 105, no. 12 (2001): 1422-1432.
  85. ^ "Endophytic fungi". doi:10.13140/rg.2.1.2497.0726. 
  86. ^ Costa, Leonardo Emanuel de Oliveira; Queiroz, Marisa Vieira de; Borges, Arnaldo Chaer; Moraes, Celia Alencar de; Araújo, Elza Fernandes de. "Isolation and characterization of endophytic bacteria isolated from the leaves of the common bean (Phaseolus vulgaris)". Brazilian Journal of Microbiology. 43 (4): 1562–1575. doi:10.1590/S1517-83822012000400041. ISSN 1517-8382. 
  87. ^ Fürnkranz, Michael; Lukesch, Birgit; Müller, Henry; Huss, Herbert; Grube, Martin; Berg, Gabriele (2011-09-23). "Microbial Diversity Inside Pumpkins: Microhabitat-Specific Communities Display a High Antagonistic Potential Against Phytopathogens". Microbial Ecology. 63 (2): 418–428. doi:10.1007/s00248-011-9942-4. ISSN 0095-3628. 
  88. ^ Hoffman, M. T.; Gunatilaka, M. K.; Wijeratne, K.; Gunatilaka, L.; Arnold, A. E. (2013). "Endohyphal bacterium enhances production of indole-3-acetic acid by a foliar fungal endophyte". PLOS ONE. 8 (9): e73132. doi:10.1371/journal.pone.0073132. 
  89. ^ Chen, Li; Li, Xiuzhang; Li, Chunjie; Swoboda, Ginger A.; Young, Carolyn A.; Sugawara, Koya; Leuchtmann, Adrian; Schardl, Christopher L. (2015-07-01). "Two distinct Epichloë species symbiotic with Achnatherum inebrians, drunken horse grass". Mycologia. 107 (4): 863–873. doi:10.3852/15-019. ISSN 0027-5514. PMID 25911697. 
  90. ^ Clark, E.M.; White, J.F.; Patterson, R.M. (1983-01-01). "Improved histochemical techniques for the detection of Acremonium coenophialum in tall fescue and methods of in vitro culture of the fungus". Journal of Microbiological Methods. 1 (3): 149–155. doi:10.1016/0167-7012(83)90033-7. 
  91. ^ a b "Biotechnology of endophytic fungi of grasses / edited by Charles W. Bacon, James F. White, Jr. - Version details - Trove". trove.nla.gov.au. Retrieved 2015-09-30. 
  92. ^ Schulz, B.; Wanke, U.; Draeger, S.; Aust, H. -J. (1993-12-01). "Endophytes from herbaceous plants and shrubs: effectiveness of surface sterilization methods". Mycological Research. 97 (12): 1447–1450. doi:10.1016/S0953-7562(09)80215-3. 
  93. ^ Thomas, Pious; Swarna, Ganiga K.; Patil, Prakash; Rawal, Ram D. (2008-02-09). "Ubiquitous presence of normally non-culturable endophytic bacteria in field shoot-tips of banana and their gradual activation to quiescent cultivable form in tissue cultures". Plant Cell, Tissue and Organ Culture. 93 (1): 39–54. doi:10.1007/s11240-008-9340-x. ISSN 0167-6857. 
  94. ^ Clark, E.M.; White, J.F., Jr.; Patterson, R.M. (1983-01-01). "Improved histochemical techniques for the detection of Acremonium coenophialum in tall fescue and methods of in vitro culture of the fungus". Journal of Microbiological Methods. 1 (3): 149–155. doi:10.1016/0167-7012(83)90033-7. 
  95. ^ White, James F., Jr.; Cole, Garry T. (1986-01-01). "Endophyte-Host Associations in Forage Grasses. IV. The Endophyte of Festuca versuta". Mycologia. 78 (1): 102–107. doi:10.2307/3793384. JSTOR 3793384. 
  96. ^ Stone, J.; White, J.; Polishook, J. (2004). "Endophytic Fungi". In Mueller; et al. Measuring and Monitoring Biodiversity of Fungi. Inventory and monitoring methods. Elsevier Academic Press. pp. 241–270. ISBN 0-12-509551-1. 
  97. ^ Unterseher, Martin (2011-01-01). Pirttilä, Anna Maria; Frank, A. Carolin, eds. Diversity of Fungal Endophytes in Temperate Forest Trees. Forestry Sciences. Springer Netherlands. pp. 31–46. doi:10.1007/978-94-007-1599-8_2. ISBN 978-94-007-1598-1. 
  98. ^ Bacon, Charles; White, James (2000). Microbial Endophytes. Marcel-Dekker. ISBN 0-8247-8831-1. 
  99. ^ Singh, D.; Mathur, S.B. (2004). Histopathology of Seed-Borne Infections. Taylor & Francis. p. 149. ISBN 978-1-4200-3817-0. 
  100. ^ Rodriguez, R. J.; White Jr, J. F.; Arnold, A. E.; Redman, R. S. (2009-04-01). "Fungal endophytes: diversity and functional roles". New Phytologist. 182 (2): 314–330. doi:10.1111/j.1469-8137.2009.02773.x. ISSN 1469-8137. 
  101. ^ BAST, F., BHUSHAN, S AND JOHN, A.A. 2014. DNA Barcoding of a new record of epi-endophytic green algae Ulvella leptochaete (Ulvellaceae, Chlorophyta) in India. Journal of Biosciences 39:711-716
  102. ^ Rosenblueth, Mónica; Martínez-Romero, Esperanza (2006-08-01). "Bacterial Endophytes and Their Interactions with Hosts". Molecular Plant-Microbe Interactions. 19 (8): 827–837. doi:10.1094/MPMI-19-0827. ISSN 0894-0282. PMID 16903349. 
  103. ^ James, Euan K.; Olivares, Fábio L. (1998-01-01). "Infection and Colonization of Sugar Cane and Other Graminaceous Plants by Endophytic Diazotrophs". Critical Reviews in Plant Sciences. 17 (1): 77–119. doi:10.1080/07352689891304195. 
  104. ^ a b White, James F.; Torres, Mónica S.; Somu, Mohini P.; Johnson, Holly; Irizarry, Ivelisse; Chen, Qiang; Zhang, Ning; Walsh, Emily; Tadych, Mariusz (2014-08-01). "Hydrogen peroxide staining to visualize intracellular bacterial infections of seedling root cells". Microscopy Research and Technique. 77 (8): 566–573. doi:10.1002/jemt.22375. ISSN 1097-0029. 
  105. ^ White, James F.; Torres, Mónica S.; Sullivan, Raymond F.; Jabbour, Rabih E.; Chen, Qiang; Tadych, Mariusz; Irizarry, Ivelisse; Bergen, Marshall S.; Havkin-Frenkel, Daphna (2014-11-01). "Occurrence of Bacillus amyloliquefaciens as a systemic endophyte of vanilla orchids". Microscopy Research and Technique. 77 (11): 874–885. doi:10.1002/jemt.22410. ISSN 1097-0029. 
  106. ^ Allan, E. J.; Hoischen, C.; Gumpert, J. (2009-01-01). Microbiology, BT - Advances in Applied, ed. Chapter 1 Bacterial L‐Forms. 68. Academic Press. pp. 1–39. doi:10.1016/s0065-2164(09)01201-5. 
  107. ^ Paungfoo-Lonhienne, Chanyarat; Schmidt, Susanne; Webb, Richard I.; Lonhienne, Thierry G. A. (2013-01-01). Bruijn, Frans J. de, ed. Rhizophagy—A New Dimension of Plant–Microbe Interactions. John Wiley & Sons, Inc. pp. 1199–1207. doi:10.1002/9781118297674.ch115. ISBN 9781118297674. 

External links[edit]