Energy density Extended Reference Table

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search

This is extended version of energy density table from the main page energy density:

Energy densities table
Storage type Specific energy (MJ/kg) Energy density (MJ/L) Peak recovery efficiency % Practical recovery efficiency %
Arbitrary Antimatter 89,875,517,874 depends on density
Deuterium-tritium fusion 338,000,000
Uranium-235 used in nuclear weapons 144,000,000 1,500,000,000
Natural uranium (99.3% U-238, 0.7% U-235) in fast breeder reactor 86,000,000
Reactor-grade uranium (3.5% U-235) in light water reactor 3,456,000 30%
Pu-238 α-decay 2,200,000
Hf-178m2 isomer 1,326,000 17,649,060
Natural uranium (0.7% U235) in light water reactor 443,000 30%
Ta-180m isomer 41,340 689,964
Metallic hydrogen (recombination energy) 216[1]
battery, Lithium-air 43.2
Specific orbital energy of Low Earth orbit (approximate) 33.0
Beryllium + Oxygen 23.9[2]
Lithium + Fluorine 23.75[citation needed]
Hydrogen + Oxygen 15.8[citation needed]
Octaazacubane potential explosive 22.9[3]
Dinitroacetylene explosive - computed[citation needed] 9.8
Octanitrocubane explosive 8.5[4] 16.9[5]
Tetranitrotetrahedrane explosive - computed[citation needed] 8.3
Heptanitrocubane explosive - computed[citation needed] 8.2
Sodium (reacted with chlorine)[citation needed] 7.0349
Hexanitrobenzene explosive 7[6]
Tetranitrocubane explosive - computed[citation needed] 6.95
Ammonal (Al+NH4NO3 oxidizer)[citation needed] 6.9 12.7
Tetranitromethane + hydrazine bipropellant - computed[citation needed] 6.6
Nitroglycerin 6.38[7] 10.2[8]
ANFO-ANNM[citation needed] 6.26
Octogen (HMX) 5.7[7] 10.8[9]
TNT [Kinney, G.F.; K.J. Graham (1985). Explosive shocks in air. Springer-Verlag. ISBN 978-3-540-15147-0.][citation needed] 4.610 6.92
Copper Thermite (Al + CuO as oxidizer)[citation needed] 4.13 20.9
Thermite (powder Al + Fe2O3 as oxidizer) 4.00 18.4
Hydrogen peroxide decomposition (as monopropellant) 2.7 3.8
battery, Lithium ion nanowire 2.54 29 95%[clarification needed][10]
battery, Lithium Thionyl Chloride (LiSOCl2)[11] 2.5
Water 220.64 bar, 373.8°C[citation needed][clarification needed] 1.968 0.708
Kinetic energy penetrator[clarification needed] 1.9 30
battery, Fluoride ion[citation needed] 1.7 2.8
battery, Hydrogen closed cycle H fuel cell[12] 1.62
Hydrazine decomposition (as monopropellant) 1.6 1.6
Ammonium nitrate decomposition (as monopropellant) 1.4 2.5
Thermal Energy Capacity of Molten Salt 1[citation needed] 98%[13]
Molecular spring approximate[citation needed] 1
battery, Sodium Sulfur .72[14] 1.23[citation needed] 85%[15]
battery, Lithium-manganese[16][17] 0.83-1.01 1.98-2.09
battery, Lithium ion[18][19] 0.46-0.72 0.83-3.6[20] 95%[21]
battery, Lithium Sulfur[22] 1.80[23] 1.80
battery (Sodium Nickel Chloride), High Temperature 0.56
battery, Silver-oxide[16] 0.47 1.8
Flywheel 0.36-0.5[24][25]
5.56 × 45 mm NATO bullet[clarification needed] 0.4 3.2
battery, Nickel metal hydride (NiMH), low power design as used in consumer batteries[26] 0.4 1.55
battery, Zinc-manganese (alkaline), long life design[16][18] 0.4-0.59 1.15-1.43
Liquid Nitrogen 0.349
Water - Enthalpy of Fusion 0.334 0.334
battery, Zinc Bromine flow (ZnBr)[27] 0.27
battery, Nickel metal hydride (NiMH), High Power design as used in cars[28] 0.250 0.493
battery, Nickel cadmium (NiCd)[18] 0.14 1.08 80%[21]
battery, Zinc-Carbon[18] 0.13 0.331
battery, Lead acid[18] 0.14 0.36
battery, Vanadium redox 0.09[citation needed] 0.1188 7070-75%
battery, Vanadium Bromide redox 0.18 0.252 80%–90%[29]
Capacitor Ultracapacitor 0.0199[30] 0.050[citation needed]
Capacitor Supercapacitor 0.01[citation needed] 80%–98.5%[31] 39%–70%[31]
Superconducting magnetic energy storage 0 0.008[32] >95%
Capacitor 0.002[33]
Neodymium magnet 0.003[34]
Ferrite magnet 0.0003[34]
Spring power (clock spring), torsion spring 0.0003[35] 0.0006
Storage type Energy density by mass (MJ/kg) Energy density by volume (MJ/L) Peak recovery efficiency % Practical recovery efficiency %

Notes[edit]

  1. ^ http://iopscience.iop.org/1742-6596/215/1/012194/pdf/1742-6596_215_1_012194.pdf
  2. ^ Cosgrove, Lee A.; Snyder, Paul E. (2002-05-01). "The Heat of Formation of Beryllium Oxide1 - Journal of the American Chemical Society (ACS Publications)". Journal of the American Chemical Society. 75 (13): 3102–3103. doi:10.1021/ja01109a018.
  3. ^ Glukhovtsev, Mikhail N.; Jiao, Haijun; Schleyer, Paul von Ragué (1996-05-28). "Besides N2, What Is the Most Stable Molecule Composed Only of Nitrogen Atoms?† - Inorganic Chemistry (ACS Publications)". Inorganic Chemistry. 35 (24): 7124–7133. doi:10.1021/ic9606237. PMID 11666896.
  4. ^ http://www3.interscience.wiley.com/journal/122324589/abstract
  5. ^ Octanitrocubane
  6. ^ http://www3.interscience.wiley.com/journal/109618256/abstract
  7. ^ a b "Chemical Explosives". Fas.org. 2008-05-30. Retrieved 2010-05-07.
  8. ^ Nitroglycerin
  9. ^ HMX
  10. ^ "Nanowire battery can hold 10 times the charge of existing lithium-ion battery". News-service.stanford.edu. 2007-12-18. Retrieved 2010-05-07.
  11. ^ "Lithium Thionyl Chloride Batteries". Nexergy. Retrieved 2010-05-07.
  12. ^ "The Unitized Regenerative Fuel Cell". Llnl.gov. 1994-12-01. Retrieved 2010-05-07.
  13. ^ "Technology". SolarReserve. Archived from the original on 2008-01-19. Retrieved 2010-05-07.
  14. ^ "New battery could change world, one house at a time". Heraldextra.com. 2009-04-04. Retrieved 2010-05-07.
  15. ^ Kita, A.; Misaki, H.; Nomura, E.; Okada, K. (August 1984). "Energy Citations Database (ECD) - - Document #5960185". Proc., Intersoc. Energy Convers. Eng. Conf.; (United States). Osti.gov. 2. OSTI 5960185.
  16. ^ a b c "ProCell Lithium battery chemistry". Duracell. Archived from the original on 2011-07-10. Retrieved 2009-04-21.
  17. ^ "Properties of non-rechargeable lithium batteries". corrosion-doctors.org. Retrieved 2009-04-21.
  18. ^ a b c d e "Battery energy storage in various battery types". AllAboutBatteries.com. Retrieved 2009-04-21.
  19. ^ A typically available lithium ion cell with an Energy Density of 201 wh/kg "Archived copy". Archived from the original on 2008-12-01. Retrieved 2012-12-14.CS1 maint: Archived copy as title (link)
  20. ^ "Lithium Batteries". Retrieved 2010-07-02.
  21. ^ a b Justin Lemire-Elmore (2004-04-13). "The Energy Cost of Electric and Human-Powered Bicycles" (PDF). p. 7. Retrieved 2009-02-26. Table 3: Input and Output Energy from Batteries
  22. ^ "Lithium Sulfur Rechargeable Battery Data Sheet" (PDF). Sion Power, Inc. 2005-09-28. Archived from the original (PDF) on 2008-08-28.
  23. ^ Kolosnitsyn, V.S.; E.V. Karaseva (2008). "Lithium-sulfur batteries: Problems and solutions". Russian Journal of Electrochemistry. 44 (5): 506–509. doi:10.1134/s1023193508050029.
  24. ^ Storage Technology Report, ST6 Flywheel
  25. ^ "Next-gen Of Flywheel Energy Storage". Product Design & Development. Archived from the original on 2010-07-10. Retrieved 2009-05-21.
  26. ^ Advanced Materials for Next Generation NiMH Batteries, Ovonic, 2008
  27. ^ "ZBB Energy Corp". Archived from the original on 2007-10-15. 75 to 85 watt-hours per kilogram
  28. ^ High Energy Metal Hydride Battery Archived 2009-09-30 at the Wayback Machine
  29. ^ "Microsoft Word - V-FUEL COMPANY AND TECHNOLOGY SHEET 2008.doc" (PDF). Retrieved 2010-05-07.
  30. ^ "Maxwell Technologies: Ultracapacitors - BCAP3000". Maxwell.com. Retrieved 2010-05-07.
  31. ^ a b "Archived copy" (PDF). Archived from the original (PDF) on 2012-07-22. Retrieved 2012-12-14.CS1 maint: Archived copy as title (link)
  32. ^ [1] Archived February 16, 2010, at the Wayback Machine
  33. ^ "Department of Computing".
  34. ^ a b http://www.askmar.com/Magnets/Promising%20Magnet%20Applications.pdf
  35. ^ "Garage Door Springs". Garagedoor.org. Retrieved 2010-05-07.