From Wikipedia, the free encyclopedia
Jump to: navigation, search
Regular enneadecagon
Regular polygon 19 annotated.svg
A regular enneadecagon
Type Regular polygon
Edges and vertices 19
Schläfli symbol {19}
Coxeter diagram CDel node 1.pngCDel 19.pngCDel node.png
Symmetry group Dihedral (D19), order 2×19
Internal angle (degrees) ≈161.052°
Dual polygon Self
Properties Convex, cyclic, equilateral, isogonal, isotoxal

In geometry an enneadecagon or 19-gon is a nineteen-sided polygon.[1] It is also known as an enneakaidecagon or a nonadecagon.[2]

Regular form[edit]

A regular enneadecagon is represented by Schläfli symbol {19}.

The radius of the circumcircle of the regular enneadecagon with side length t is (angle in degrees). The area, where t is the edge length, is


As 19 is a Pierpont prime but not a Fermat prime, the regular enneadecagon cannot be constructed using a compass and straightedge. However, it is constructible using neusis, or an angle trisector.

Approximated Enneadecagon Inscribed in a Circle.gif

Another animation of an approximate construction.

Enneadecagon, approximate construction as an animation

GeoGebra: BME1 = 18.94736842105263°

GeoGebra: 360° ÷ 19 = 18.94736842105263°

Absolute angular error of the constructed central angle:

That can not be shown in GeoGebra, because the result of the constructed central angle and the result of the calculated central angle of tridecagon is in all thirdteen decimal places by GeoGebra shown equal!

Example to illustrate the error:

At a circumscribed circle radius r = 1 billion km (the light would need for this route about 55 minutes), the 1st side would be still without error [mm].

For details, see: Enneadecagon, proximity construction


Symmetries of a regular enneadecagon. Vertices are colored by their symmetry positions. Blue mirror lines are drawn through vertices and edges. Gyration orders are given in the center.

The regular enneadecagon has Dih19 symmetry, order 38. Since 19 is a prime number there is one subgroup with dihedral symmetry: Dih1, and 2 cyclic group symmetries: Z19, and Z1.

These 4 symmetries can be seen in 4 distinct symmetries on the enneadecagon. John Conway labels these by a letter and group order.[3] Full symmetry of the regular form is r38 and no symmetry is labeled a1. The dihedral symmetries are divided depending on whether they pass through vertices (d for diagonal) or edges (p for perpendiculars), and i when reflection lines path through both edges and vertices. Cyclic symmetries in the middle column are labeled as g for their central gyration orders.

Each subgroup symmetry allows one or more degrees of freedom for irregular forms. Only the g19 subgroup has no degrees of freedom but can seen as directed edges.

Related polygons[edit]

A enneadecagram is a 19-sided star polygon. There are nine regular forms given by Schläfli symbols: {19/2}, {19/3}, {19/4}, {19/5}, {19/6}, {19/7}, {19/8}, and {19/9}.

Picture Regular star polygon 19-2.svg
Regular star polygon 19-3.svg
Regular star polygon 19-4.svg
Regular star polygon 19-5.svg
Interior angle ≈142.105° ≈123.158° ≈104.211° ≈85.2632°
Picture Regular star polygon 19-6.svg
Regular star polygon 19-7.svg
Regular star polygon 19-8.svg
Regular star polygon 19-9.svg
Interior angle ≈66.3158° ≈47.3684° ≈28.4211° ≈9.47368°

Petrie polygons[edit]

The regular enneadecagon is the Petrie polygon for one higher-dimensional polytope, projected in a skew orthogonal projection:

18-simplex t0.svg
18-simplex (18D)


  1. ^ Borges, Samantha; Morgan, Matthew (2012), Children's Miscellany: Useless Information That's Essential to Know, Chronicle Books, p. 110, ISBN 9781452119731 .
  2. ^ McKinney, Sueanne; Hinton, KaaVonia (2010), Mathematics in the K-8 Classroom and Library, ABC-CLIO, p. 67, ISBN 9781586835224 .
  3. ^ John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, (2008) The Symmetries of Things, ISBN 978-1-56881-220-5 (Chapter 20, Generalized Schaefli symbols, Types of symmetry of a polygon pp. 275-278)

External links[edit]