Enneagonal antiprism

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Uniform Enneagonal antiprism
Enneagonal antiprism.png
Type Prismatic uniform polyhedron
Elements F = 20, E = 36
V = 18 (χ = 2)
Faces by sides 18{3}+2{9}
Schläfli symbol s{2,18}
Wythoff symbol | 2 2 9
Coxeter diagram CDel node h.pngCDel 2x.pngCDel node h.pngCDel 18.pngCDel node.png
CDel node h.pngCDel 2x.pngCDel node h.pngCDel 9.pngCDel node h.png
Symmetry group D9d, [2+,18], (2*9), order 36
Rotation group D9, [9,2]+, (922), order 18
References U77(g)
Dual Enneagonal trapezohedron
Properties convex
Enneagonal antiprism vertfig.png
Vertex figure

In geometry, the enneagonal antiprism is one in an infinite set of convex antiprisms formed by triangle sides and two regular polygon caps, in this case two enneagons.

If faces are all regular, it is a semiregular polyhedron.

See also[edit]

Family of uniform antiprisms n.3.3.3
Polyhedron Digonal antiprism.png Trigonal antiprism.png Square antiprism.png Pentagonal antiprism.png Hexagonal antiprism.png Antiprism 7.png Octagonal antiprism.png Enneagonal antiprism.png Decagonal antiprism.png Hendecagonal antiprism.png Dodecagonal antiprism.png
Tiling Spherical digonal antiprism.png Spherical trigonal antiprism.png Spherical square antiprism.png Spherical pentagonal antiprism.png Spherical hexagonal antiprism.png Spherical heptagonal antiprism.png Spherical octagonal antiprism.png Infinite antiprism.png
Config. V2.3.3.3 ...∞.3.3.3

External links[edit]