Eske Willerslev

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Eske Willerslev
Eske Willerslev in the laboratory.
Born 5 June 1971
Nationality Danish
Fields Evolutionary biologists
Institutions University of Copenhagen
Known for Ancient DNA

Eske Willerslev (5 June 1971) is a Danish evolutionary biologist notable for his pioneering work on Ancient DNA. He is currently a full professor at Copenhagen University and director of the Centre of Excellence in GeoGenetics. He is the son of historian Richard Willerslev and twin brother of anthropologist Rane Willerslev.


Before becoming a scientist Willerslev led several expeditions in Siberia in the early 1990s with his twin brother, anthropologist Rane Willerslev collecting ethnographic materials and Megafauna skeleton remains that are stored at Moesgaard Museum in Denmark (the largest Siberian ethnographical collection in Denmark). Willerslev also lived as a fur trapper in the Sakha (Yakutia) Republic from 1993–94.[1] Willerslev handed in his PhD thesis as a doctor thesis and obtained his DSc at Copenhagen University in 2004.[2] He moved to Oxford University as an independent Wellcome Trust Fellow, and became full professor at Copenhagen University at the age of 33, the youngest person to become a full professor in Denmark at the time. Willerslev is a Foreign Associate Member of The National Academy of Sciences (USA),[3] elected member of the Royal Danish Academy of Sciences and Letters,[4] and Honorary Doctor at University of Oslo.[5] He has been a visiting professor at Oxford University, UK, and a Visiting Miller Professor at UC Berkeley. In 2014 he became an adopted member of the Crow Tribe in Montana (Apsaalooke), where he carries the name ChiitdeeXia’ssee (Well Known Scout).[6]

He has received several awards including the Antiquity Prize for the best paper in the journal Antiquity in 2009, the Danish Independent Research Council's Major EliteForsk Prize,[7] the Rosenkjær Award[8] and the Genius Award (Geniusprisen) of Danish Science journalists for "an impressive array of research successes in the public eye, combined with a unique tour-de-force through university".[9][10]


Megafaunal extinction[edit]

His group is interested in understanding what caused the decreases in diversity of Megafauna after the last ice age and past human population genetics. He was the first to use environmental ancient DNA where ancient DNA from animals and plants is retrieved directly from the environment such as sediments and ice.[11][12] Using this approach, Willerslev and collaborators estimated that woolly mammoth in mainland Alaska survived more than 3,500 years than previously thought, thereby dismissing the Blitzkrieg and Impact hypotheses for Megafauna extinction.[13] They also clarified the importance of climate change as a driver of Megafauna population dynamics,[14] and the decline of protein rich forbs during the Pleistocene extinctions.[15]

Early peopling of the Americas[edit]

In 2008 he led the DNA study on coprolites from the Paisley Caves in Oregon showing human presence in North America more than 14,000 years ago and some 1000 years prior to Clovis.[16] In 2010 a team led by Willerslev sequenced the genome of a 4,000-year-old man from the Saqqaq culture of Greenland from his hair, the first ancient human genome to be sequenced. The DNA obtained from the hair was fragmented into an average size of 55 base pairs.[17] They revealed that the Saqqaq peoples represent a migration from Siberia to the Americas that is separate from that of Native American and Inuit ancestors. In 2014 his team showed that all paleoeskimos in the New World belong to the same population as the Saqqaq man and that they lived in genetic isolation from Native Americans for almost 5,000 years before they died out some 700 years ago.[18] In 2013 his team discovered a genetic link between western Eurasians and Native Americans by sequencing the genome of the 24,000-year-old Mal´ta boy from central Siberia, showing that all contemporary Native Americans carry approximately 1/3 of their genome from the Mal’ta population.[19] In 2014 his team sequenced the Clovis-age genome from the 12,600-year-old Anzick boy from Montana and found it to be ancestral to many contemporary Native Americans thereby rejecting the Solutrean theory for early peopling of the Americas.[20] The skeleton of the boy was later reburied by the support of Willerslev and this event facilitated his adoption into the Crow tribe.[6]

Other research[edit]

He also led a study showing that living bacteria can take up ancient DNA by natural transformation allowing for genomic recycling of ancient genetic traits.[21] Willerslev and collaborators have sequenced the genome of a 700,000-year-old horse from Yukon in Canada, which as of 2014 is the oldest genome ever sequenced.[22]


  1. ^ Fra pelsjæger til Professor. 2 June 2008
  2. ^ Willerslev E. (2004) Recovery and analysis of ancient DNA from ice, sediments, and fossil remains. DSc thesis University of Copenhagen 2004 pp. 1–346, HCØ tryk, University of Copenhagen, Denmark.
  3. ^ "Eske Willerslev". Retrieved 7 October 2014. 
  4. ^ "VIDENSKABERNES SELSKAB". Retrieved 7 October 2014. 
  5. ^ "Ancient and environmental DNA studies – Centre for Ecological and Evolutionary Synthesis". Retrieved 7 October 2014. 
  6. ^ a b "For Crow-indianerne er han »Well-known Wolf«". Retrieved 7 October 2014. 
  7. ^ "Eske Willerslev — EliteForsk". Retrieved 7 October 2014. 
  8. ^ "Rosenkjær-foredrag med Eske Willerslev". 12 September 2013. 
  9. ^ cawa (16 June 2009). "DNA-forsker Eske Willerslev fik hæderspris". Retrieved 7 October 2014. 
  10. ^ "Geniusprisen". Retrieved 7 October 2014. Eske Willerslev har en imponerende række af formidlingssucceser i offentligheden bag sig kombineret med en enestående tour-de-force gennem universitetsverdenen [...] Begge har beriget Danmark med formidling af højeste karat og Danske Videnskabsjournalister er stolte af at kunne hædre de to forskere. 
  11. ^ Willerslev, E.; Hansen, Anders J.; Binladen, Jonas; Brand, Tina B.; Gilbert, M. Thomas P.; Shapiro, Beth; Bunce, Michael; Wiuf, Carsten; Gilichinsky, David A.; Cooper, Alan (2003). "Diverse Plant and Animal Genetic Records from Holocene and Pleistocene Sediments". Science 300 (5620): 791. Bibcode:2003Sci...300..791W. doi:10.1126/science.1084114. PMID 12702808. 
  12. ^ Willerslev, E.; Cappellini, E.; Boomsma, W.; Nielsen, R.; Hebsgaard, M. B.; Brand, T. B.; Hofreiter, M.; Bunce, M.; Poinar, H. N.; Dahl-Jensen, D.; Johnsen, S.; Steffensen, J. P.; Bennike, O.; Schwenninger, J. -L.; Nathan, R.; Armitage, S.; De Hoog, C. -J.; Alfimov, V.; Christl, M.; Beer, J.; Muscheler, R.; Barker, J.; Sharp, M.; Penkman, K. E. H.; Haile, J.; Taberlet, P.; Gilbert, M. T. P.; Casoli, A.; Campani, E.; Collins, M. J. (2007). "Ancient Biomolecules from Deep Ice Cores Reveal a Forested Southern Greenland". Science 317 (5834): 111. Bibcode:2007Sci...317..111W. doi:10.1126/science.1141758. PMC 2694912. PMID 17615355. 
  13. ^ Haile, J.; Froese, D. G.; MacPhee, R. D. E.; Roberts, R. G.; Arnold, L. J.; Reyes, A. V.; Rasmussen, M.; Nielsen, R.; Brook, B. W.; Robinson, S.; Demuro, M.; Gilbert, M. T. P.; Munch, K.; Austin, J. J.; Cooper, A.; Barnes, I.; Moller, P.; Willerslev, E. (2009). "Ancient DNA reveals late survival of mammoth and horse in interior Alaska". Proceedings of the National Academy of Sciences 106 (52): 22352. Bibcode:2009PNAS..10622352H. doi:10.1073/pnas.0912510106. 
  14. ^ Lorenzen, E. D.; Nogués-Bravo, D.; Orlando, L.; Weinstock, J.; Binladen, J.; Marske, K. A.; Ugan, A.; Borregaard, M. K.; Gilbert, M. T. P.; Nielsen, R.; Ho, S. Y. W.; Goebel, T.; Graf, K. E.; Byers, D.; Stenderup, J. T.; Rasmussen, M.; Campos, P. F.; Leonard, J. A.; Koepfli, K. P.; Froese, D.; Zazula, G.; Stafford, T. W.; Aaris-Sørensen, K.; Batra, P.; Haywood, A. M.; Singarayer, J. S.; Valdes, P. J.; Boeskorov, G.; Burns, J. A.; et al. (2011). "Species-specific responses of Late Quaternary megafauna to climate and humans". Nature 479 (7373): 359. Bibcode:2011Natur.479..359L. doi:10.1038/nature10574. PMID 22048313. 
  15. ^ Willerslev, E.; Davison, J.; Moora, M.; Zobel, M.; Coissac, E.; Edwards, M. E.; Lorenzen, E. D.; Vestergård, M.; Gussarova, G.; Haile, J.; Craine, J.; Gielly, L.; Boessenkool, S.; Epp, L. S.; Pearman, P. B.; Cheddadi, R.; Murray, D.; Bråthen, K. A.; Yoccoz, N.; Binney, H.; Cruaud, C.; Wincker, P.; Goslar, T.; Alsos, I. G.; Bellemain, E.; Brysting, A. K.; Elven, R.; Sønstebø, J. R. H.; Murton, J.; et al. (2014). "Fifty thousand years of Arctic vegetation and megafaunal diet". Nature 506 (7486): 47–51. Bibcode:2014Natur.506...47W. doi:10.1038/nature12921. PMID 24499916. 
  16. ^ Gilbert, M. T. P.; Jenkins, D. L.; Gotherstrom, A.; Naveran, N.; Sanchez, J. J.; Hofreiter, M.; Thomsen, P. F.; Binladen, J.; Higham, T. F. G.; Yohe, R. M.; Parr, R.; Cummings, L. S.; Willerslev, E. (2008). "DNA from Pre-Clovis Human Coprolites in Oregon, North America". Science 320 (5877): 786. Bibcode:2008Sci...320..786G. doi:10.1126/science.1154116. PMID 18388261. 
  17. ^ Katherine Harmon "Long-Locked Genome of Ancient Man Sequenced". Retrieved 7 October 2014.  Scientific American. 10 February 2010.
  18. ^ Raghavan, M.; Degiorgio, M.; Albrechtsen, A.; Moltke, I.; Skoglund, P.; Korneliussen, T. S.; Gronnow, B.; Appelt, M.; Gullov, H. C.; Friesen, T. M.; Fitzhugh, W.; Malmstrom, H.; Rasmussen, S.; Olsen, J.; Melchior, L.; Fuller, B. T.; Fahrni, S. M.; Stafford, T.; Grimes, V.; Renouf, M. A. P.; Cybulski, J.; Lynnerup, N.; Lahr, M. M.; Britton, K.; Knecht, R.; Arneborg, J.; Metspalu, M.; Cornejo, O. E.; Malaspinas, A. -S.; et al. (2014). "The genetic prehistory of the New World Arctic". Science 345 (6200): 1255832. doi:10.1126/science.1255832. PMID 25170159. 
  19. ^ Raghavan, M.; Skoglund, P.; Graf, K. E.; Metspalu, M.; Albrechtsen, A.; Moltke, I.; Rasmussen, S.; Stafford Jr, T. W.; Orlando, L.; Metspalu, E.; Karmin, M.; Tambets, K.; Rootsi, S.; Mägi, R.; Campos, P. F.; Balanovska, E.; Balanovsky, O.; Khusnutdinova, E.; Litvinov, S.; Osipova, L. P.; Fedorova, S. A.; Voevoda, M. I.; Degiorgio, M.; Sicheritz-Ponten, T.; Brunak, S. R.; Demeshchenko, S.; Kivisild, T.; Villems, R.; Nielsen, R.; et al. (2013). "Upper Palaeolithic Siberian genome reveals dual ancestry of Native Americans". Nature 505 (7481): 87. Bibcode:2014Natur.505...87R. doi:10.1038/nature12736. PMID 24256729. 
  20. ^ Rasmussen, M.; Anzick, S. L.; Waters, M. R.; Skoglund, P.; DeGiorgio, M.; Stafford, T. W.; Rasmussen, S.; Moltke, I.; Albrechtsen, A.; Doyle, S. M.; Poznik, G. D.; Gudmundsdottir, V.; Yadav, R.; Malaspinas, A. S.; White, S. S.; Allentoft, M. E.; Cornejo, O. E.; Tambets, K.; Eriksson, A.; Heintzman, P. D.; Karmin, M.; Korneliussen, T. S.; Meltzer, D. J.; Pierre, T. L.; Stenderup, J.; Saag, L.; Warmuth, V. M.; Lopes, M. C.; Malhi, R. S.; Brunak, S. R.; Sicheritz-Ponten, T.; Barnes, I.; Collins, M.; Orlando, L.; Balloux, F.; Manica, A.; Gupta, R.; Metspalu, M.; Bustamante, C. D.; Jakobsson, M.; Nielsen, R.; Willerslev, E. (2014-02-13). "The genome of a Late Pleistocene human from a Clovis burial site in western Montana". Nature 506 (7487): 225–229. Bibcode:2014Natur.506..225R. doi:10.1038/nature13025. PMID 24522598. 
  21. ^ Overballe-Petersen, S.; Harms, K.; Orlando, L. A. A.; Mayar, J. V. M.; Rasmussen, S.; Dahl, T. W.; Rosing, M. T.; Poole, A. M.; Sicheritz-Ponten, T.; Brunak, S.; Inselmann, S.; De Vries, J.; Wackernagel, W.; Pybus, O. G.; Nielsen, R.; Johnsen, P. J.; Nielsen, K. M.; Willerslev, E. (2013). "Bacterial natural transformation by highly fragmented and damaged DNA". Proceedings of the National Academy of Sciences 110 (49): 19860–5. Bibcode:2013PNAS..11019860O. doi:10.1073/pnas.1315278110. PMID 24248361. 
  22. ^ Orlando, L.; Ginolhac, A. L.; Zhang, G.; Froese, D.; Albrechtsen, A.; Stiller, M.; Schubert, M.; Cappellini, E.; Petersen, B.; Moltke, I.; Johnson, P. L. F.; Fumagalli, M.; Vilstrup, J. T.; Raghavan, M.; Korneliussen, T.; Malaspinas, A. S.; Vogt, J.; Szklarczyk, D.; Kelstrup, C. D.; Vinther, J.; Dolocan, A.; Stenderup, J.; Velazquez, A. M. V.; Cahill, J.; Rasmussen, M.; Wang, X.; Min, J.; Zazula, G. D.; Seguin-Orlando, A.; Mortensen, C. (2013). "Recalibrating Equus evolution using the genome sequence of an early Middle Pleistocene horse". Nature 499 (7456): 74–78. Bibcode:2013Natur.499...74O. doi:10.1038/nature12323. PMID 23803765.