Exiguobacterium

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search

Exiguobacterium
Scientific classification
Kingdom: Bacteria
Phylum: Firmicutes
Class: Bacilli
Order: Bacillales
Family: Bacillaceae
Genus: Exiguobacterium
Collins et al. 1983[1]
Type species
Exiguobacterium aurantiacum[1]
Species

E. acetylicum[1]
E. aestuarii[1]
E. alkaliphilum[1]
E. antarcticum[1]
E. aquaticum[1]
E. artemiae[1]
E. aurantiacum[1]
E. enclense[1]
E. indicum[1]
E. marinum[1]
E. mexicanum[1]
E. oxidotolerans[1]
E. profundum[1]
E. sibiricum[1]
E. soli[1]
E. undae[1]

Exiguobacterium is a genus of bacilli and a member of the low GC phyla of Firmicutes. Collins et al. first described the genus Exiguobacterium with the characterization of E. aurantiacum strain DSM6208T from an alkaline potato processing plant.[2] It has been found in areas covering a wide range of temperatures (-12oC—55oC) including glaciers in Greenland and hot springs in Yellowstone, and has been isolated from ancient permafrost in Siberia.[3] This ability to survive in varying temperature extremes makes them an important area of study. Some strains in addition to dynamic thermal adaption are also halotolerant (up to 13% added NaCl added to the medium), can grow within a wide range of pH values (5-11), tolerate high levels of UV radiation, and heavy metal stress (including arsenic).[4]

Exiguobacterium are globally diverse organisms that are found in a variety of environments including microbialites (Thrombolite[5] from Pavilion Lake, BC and Stromatolites[6] from Laguna Socompa, Argentina), ocean,[7] freshwater lakes,[8] Himalayan ice,[9] Himalayan soil,[10] hydrothermal vents,[11] brine shrimp [12] and in microbial biofilms [13]

Currently, seven genomes from the genus have been completed as either complete (one circular chromosome, with plasmids) or in a draft format (containing multiple unassembled contigs).

Biodegradation of plastic[edit]

According to an article in the Stanford News Service,[14] senior research engineer Wei-Min Wu reported in his article "Biodegradation and Mineralization of Polystyrene by Plastic-Eating Mealworms. 2. Role of Gut Microorganisms." [15] that mealworms can survive on a diet of polystyrene when aided by strain YT2 of Exiguobacterium living in their gut.

References[edit]

  1. ^ a b c d e f g h i j k l m n o p q r Parte, A.C. "Exiguobacterium". www.bacterio.net.
  2. ^ Collins MD, Lund BM, Farrow JA, Schleifer KH (1983). "Chemotaxonomic study of an alkaliphilic bacterium, Exiguobacterium aurantiacum gen nov., sp. nov". J. Gen. Microbiol. 129 (7): 2037–2042. doi:10.1099/00221287-129-7-2037.
  3. ^ Vishnivetskaya, Tatiana A.; Kathariou, Sophia; Tiedje, James M. (May 2009). "The Exiguobacterium genus: biodiversity and biogeography". Extremophiles. 13 (3): 541–555. arXiv:1109.6589. Bibcode:2011Extrm..15..633A. doi:10.1007/s00792-009-0243-5. PMID 19381755.
  4. ^ Ordoñeza OF, Lanzarottid E, Kurtha D, Gorritia MF, Revalec S, Cortez N, Vazquez MP, Farías ME, Turjanskie AG (July–August 2013). "Draft Genome Sequence of the Polyextremophilic Exiguobacterium sp. Strain S17, Isolated from Hyperarsenic Lakes in the Argentinian Puna". Genome Announcements. 1 (4): 2037–2042. doi:10.1128/genomeA.00480-13. PMC 3735063. PMID 23887911.
  5. ^ White III RA, Grassa CJ, Suttle CA (July–August 2013). "Draft Genome Sequence of an Exiguobacterium pavilionensis Strain RW-2 with Wide Thermal, Salinity, and pH Tolerance, Isolated from Modern Freshwater Microbialites". Genome Announcements. 1 (4): e00597–13. doi:10.1128/genomeA.00597-13. PMC 3738901. PMID 23929485.
  6. ^ Ordoñez OF, Lanzarotti E, Kurth D, Gorriti MF, Revale S, Cortez N, Vazquez MP, Farías ME, Turjanski AG (July–August 2013). "Draft Genome Sequence of the Polyextremophilic Exiguobacterium sp. Strain S17, Isolated from Hyperarsenic Lakes in the Argentinian Puna". Genome Announcements. 1 (4): 2037–2042. doi:10.1128/genomeA.00480-13. PMC 3735063. PMID 23887911.
  7. ^ Kim IJ, Lee MH, Jung SY, Song JJ, Oh TK, Yoon JH (2005). "Exiguobacterium aestuarii sp. nov. and E. marinum sp. nov., isolated from tidal flat of the yellow sea in Korea". Int. J. Syst. Evol. Microbiol. 55 (2): 885–889. doi:10.1099/ijs.0.63308-0. PMID 15774680.
  8. ^ Raichand R, Pareek S, Singh NK, Mayilraj S (2012). "Exiguobacterium aquaticum sp. nov., a new member of the genus Exiguobacterium". Int. J. Syst. Evol. Microbiol. 62 (Pt 9): 2150–2155. doi:10.1099/ijs.0.035790-0. PMID 22058319.
  9. ^ Chaturvedi P, Shivaji S (2006). "Exiguobacterium indicum sp. nov., a psychrophilic bacterium from the Hamta glacier of the Himalayan mountain ranges of India". Int. J. Syst. Evol. Microbiol. 56 (103): 2765–2770. doi:10.1099/ijs.0.64508-0. PMID 17158975.
  10. ^ Singh NK, Raichand R, Kaur I, Kaur C, Pareek S, Mayilraj S (2013). "Exiguobacterium himgiriensis sp. nov., a novel member of the genus Exiguobacterium, isolated from the Indian Himalayas". Antonie van Leeuwenhoek. 103 (4): 789–796. doi:10.1007/s10482-012-9861-5. PMID 23229437.
  11. ^ Crapart S, Fardeau ML, Cayol JL, Thomas P, Sery C, Ollivier B, Combet-Blanc Y (2007). "Exiguobacterium profundum sp., nov., a moderately thermophilic, lactic acid-producing bacterium isolated from a deep-sea hydrothermal vent". Int. J. Syst. Bacteriol. 57 (Pt 2): 287–292. doi:10.1099/ijs.0.64639-0. PMID 17267965.
  12. ^ Lopez-Cortes A, Schumann P, Pukall R, Stackebrandt E (2006). "Exiguobacterium mexicanum sp. nov. and Exiguobacterium artemiae sp., nov., isolated from the brine shrimp Artemia franciscana". Syst. Appl. Microbiol. 29 (3): 183–190. doi:10.1016/j.syapm.2005.09.007. PMID 16564954.
  13. ^ Carneiro AR; Ramos RT; Dall’Agnol H; Pinto AC; de Castro Soares S; Santos AR; Guimarães LC; Almeida SS; Baraúna RA; das Graças DA; Franco LC; Ali A; Hassan SS; Nunes CI; Barbosa MS; Fiaux KK; Aburjaile FF; Barbosa EG; Bakhtiar SM; Vilela D; Nóbrega F; dos Santos AL; Carepo MS; Azevedo V; Schneider MP; Pellizari VH; Silva A (2012). "Genome sequence of Exiguobacterium antarcticum B7, isolated from a biofilm in Ginger Lake, King George Island, Antarctica". J. Bacteriol. 23: 6689–6690.
  14. ^ "Plastic-eating worms may offer solution to mounting waste, Stanford researchers discover - Stanford News Release". news.stanford.edu. 2015-09-29.
  15. ^ Yang Y, Yang J, Wu WM, Zhao J, Song Y, Gao L, Yang R, Jiang L (2015). "Biodegradation and Mineralization of Polystyrene by Plastic-Eating Mealworms: Part 2. Role of Gut Microorganisms". Environ. Sci. Technol. 49 (20): 12087–93. Bibcode:2015EnST...4912087Y. doi:10.1021/acs.est.5b02663. PMID 26390390.