Fσ set

(Redirected from F-sigma)

In mathematics, an Fσ set (said F-sigma set) is a countable union of closed sets. The notation originated in France with F for fermé (French: closed) and σ for somme (French: sum, union).[1]

In metrizable spaces, every open set is an Fσ set.[2] The complement of an Fσ set is a Gδ set.[1] In a metrizable space, any closed set is a Gδ set.

The union of countably many Fσ sets is an Fσ set, and the intersection of finitely many Fσ sets is an Fσ set. Fσ is the same as ${\displaystyle \mathbf {\Sigma } _{2}^{0}}$ in the Borel hierarchy.

Examples

Each closed set is an Fσ set.

The set ${\displaystyle \mathbb {Q} }$ of rationals is an Fσ set. The set ${\displaystyle \mathbb {R} \setminus \mathbb {Q} }$ of irrationals is not a Fσ set.

In a Tychonoff space, each countable set is an Fσ set, because a point ${\displaystyle {x}}$ is closed.

For example, the set ${\displaystyle A}$ of all points ${\displaystyle (x,y)}$ in the Cartesian plane such that ${\displaystyle x/y}$ is rational is an Fσ set because it can be expressed as the union of all the lines passing through the origin with rational slope:

${\displaystyle A=\bigcup _{r\in \mathbb {Q} }\{(ry,y)\mid y\in \mathbb {R} \},}$

where ${\displaystyle \mathbb {Q} }$, is the set of rational numbers, which is a countable set.