FARP2

From Wikipedia, the free encyclopedia
Jump to: navigation, search
FARP2
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases FARP2, FIR, FRG, PLEKHC3, FERM, ARH/RhoGEF and pleckstrin domain protein 2
External IDs MGI: 2385126 HomoloGene: 8877 GeneCards: FARP2
Genetically Related Diseases
chronic lymphocytic leukemia[1]
RNA expression pattern
PBB GE FARP2 204511 at fs.png
More reference expression data
Orthologs
Species Human Mouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001282983
NM_001282984
NM_014808

NM_145519

RefSeq (protein)

NP_001269912
NP_001269913
NP_055623

NP_663494.2
NP_663494

Location (UCSC) Chr 2: 241.36 – 241.49 Mb Chr 1: 93.51 – 93.62 Mb
PubMed search [2] [3]
Wikidata
View/Edit Human View/Edit Mouse

FERM, RhoGEF and pleckstrin domain-containing protein 2 is a protein that in humans is encoded by the FARP2 gene.[4][5][6]

Model organisms[edit]

Model organisms have been used in the study of FARP2 function. A conditional knockout mouse line, called Farp2tm1a(KOMP)Wtsi[11][12] was generated as part of the International Knockout Mouse Consortium program — a high-throughput mutagenesis project to generate and distribute animal models of disease to interested scientists.[13][14][15]

Male and female animals underwent a standardized phenotypic screen to determine the effects of deletion.[9][16] Twenty four tests were carried out on mutant mice and two significant abnormalities were observed.[9] Homozygous mutant animals had a thickened cerebral cortex and displayed abnormal hair shedding.[9]

Interactions[edit]

FARP2 has been shown to interact with PDZK1.[17]

References[edit]

  1. ^ "Diseases that are genetically associated with FARP2 view/edit references on wikidata". 
  2. ^ "Human PubMed Reference:". 
  3. ^ "Mouse PubMed Reference:". 
  4. ^ Nagase T, Ishikawa K, Suyama M, Kikuno R, Miyajima N, Tanaka A, Kotani H, Nomura N, Ohara O (Oct 1998). "Prediction of the coding sequences of unidentified human genes. XI. The complete sequences of 100 new cDNA clones from brain which code for large proteins in vitro". DNA Research. 5 (5): 277–86. doi:10.1093/dnares/5.5.277. PMID 9872452. 
  5. ^ Kubo T, Yamashita T, Yamaguchi A, Sumimoto H, Hosokawa K, Tohyama M (Oct 2002). "A novel FERM domain including guanine nucleotide exchange factor is involved in Rac signaling and regulates neurite remodeling". The Journal of Neuroscience. 22 (19): 8504–13. PMID 12351724. 
  6. ^ "Entrez Gene: FARP2 FERM, RhoGEF and pleckstrin domain protein 2". 
  7. ^ "Salmonella infection data for Farp2". Wellcome Trust Sanger Institute. 
  8. ^ "Citrobacter infection data for Farp2". Wellcome Trust Sanger Institute. 
  9. ^ a b c d Gerdin AK (2010). "The Sanger Mouse Genetics Programme: High throughput characterisation of knockout mice". Acta Ophthalmologica. 88: 925–7. doi:10.1111/j.1755-3768.2010.4142.x. 
  10. ^ Mouse Resources Portal, Wellcome Trust Sanger Institute.
  11. ^ "International Knockout Mouse Consortium". 
  12. ^ "Mouse Genome Informatics". 
  13. ^ Skarnes WC, Rosen B, West AP, Koutsourakis M, Bushell W, Iyer V, Mujica AO, Thomas M, Harrow J, Cox T, Jackson D, Severin J, Biggs P, Fu J, Nefedov M, de Jong PJ, Stewart AF, Bradley A (Jun 2011). "A conditional knockout resource for the genome-wide study of mouse gene function". Nature. 474 (7351): 337–42. doi:10.1038/nature10163. PMC 3572410Freely accessible. PMID 21677750. 
  14. ^ Dolgin E (Jun 2011). "Mouse library set to be knockout". Nature. 474 (7351): 262–3. doi:10.1038/474262a. PMID 21677718. 
  15. ^ Collins FS, Rossant J, Wurst W (Jan 2007). "A mouse for all reasons". Cell. 128 (1): 9–13. doi:10.1016/j.cell.2006.12.018. PMID 17218247. 
  16. ^ van der Weyden L, White JK, Adams DJ, Logan DW (2011). "The mouse genetics toolkit: revealing function and mechanism". Genome Biology. 12 (6): 224. doi:10.1186/gb-2011-12-6-224. PMC 3218837Freely accessible. PMID 21722353. 
  17. ^ Gisler SM, Pribanic S, Bacic D, Forrer P, Gantenbein A, Sabourin LA, Tsuji A, Zhao ZS, Manser E, Biber J, Murer H (Nov 2003). "PDZK1: I. a major scaffolder in brush borders of proximal tubular cells". Kidney International. 64 (5): 1733–45. doi:10.1046/j.1523-1755.2003.00266.x. PMID 14531806. 

Further reading[edit]

  • Jin J, Smith FD, Stark C, Wells CD, Fawcett JP, Kulkarni S, Metalnikov P, O'Donnell P, Taylor P, Taylor L, Zougman A, Woodgett JR, Langeberg LK, Scott JD, Pawson T (Aug 2004). "Proteomic, functional, and domain-based analysis of in vivo 14-3-3 binding proteins involved in cytoskeletal regulation and cellular organization". Current Biology. 14 (16): 1436–50. doi:10.1016/j.cub.2004.07.051. PMID 15324660. 
  • Gisler SM, Pribanic S, Bacic D, Forrer P, Gantenbein A, Sabourin LA, Tsuji A, Zhao ZS, Manser E, Biber J, Murer H (Nov 2003). "PDZK1: I. a major scaffolder in brush borders of proximal tubular cells". Kidney International. 64 (5): 1733–45. doi:10.1046/j.1523-1755.2003.00266.x. PMID 14531806. 
  • Miyamoto Y, Yamauchi J, Itoh H (Aug 2003). "Src kinase regulates the activation of a novel FGD-1-related Cdc42 guanine nucleotide exchange factor in the signaling pathway from the endothelin A receptor to JNK". The Journal of Biological Chemistry. 278 (32): 29890–900. doi:10.1074/jbc.M301559200. PMID 12771149. 
  • "Toward a complete human genome sequence". Genome Research. 8 (11): 1097–108. Nov 1998. doi:10.1101/gr.8.11.1097. PMID 9847074.