Fayetteville Shale

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search
Fayetteville Shale Sandstone
Stratigraphic range: Carboniferous: Mississippian (Serpukhovian)[1]
LowerFayettevilleShale.jpeg
Outcrop of the lower Fayetteville shale in northern Arkansas.
Type Geological formation
Sub-units Wedington Sandstone Member
Underlies Pitkin Limestone,[2] Hale Formation[3]
Overlies Ruddell Shale, Batesville Sandstone [2] Moorefield Shale[3]
Area Arkansas and Oklahoma [4]
Thickness 50 to 500 feet (15 to 152 m)
Lithology
Primary Shale
Other Sandstone, Limesone
Location
Region Arkansas
Country United States
Extent 50 miles (80 km)
Type section
Named for Fayetteville, Washington County, Arkansas
Named by Frederick Willard Simonds[5][6]
Map of USA AR.svg
The Fayetteville formation runs widespread across Arkansas

The Fayetteville Shale is a geologic formation of Mississippian age (354–323 million years ago) composed of tight shale within the Arkoma basin of Arkansas and Oklahoma.[4][7] It is named for the city of Fayetteville, Arkansas, and requires hydraulic fracturing to release the natural gas contained within.

Nomenclature[edit]

Photograph of the Wedington Sandstone Member (mistaken as Batesville Sandstone) circa 1891

Named by Frederick Willard Simonds in 1891, Simonds recognized what is now the Fayetteville Shale as three separate formations overlying the now abandoned Wyman Sandstone: the Fayetteville Shale, the Batesville Sandstone, and the Marshall Shale[6]. In 1904, the name "Fayetteville Shale" replaced all three of these names. The Fayetteville Shale that Simonds recognized is now considered as the lower Fayetteville Shale. Simonds' Batesville Sandstone was found to be the same as the Wyman Sandstone, and replaced the name "Wyman Sandstone", while Simonds' Batesville Sandstone became known as the "Wedington Sandstone Member" presumably after Wedington Mountain. The name Marshall Shale was abandoned and is now known as the upper Fayetteville Shale[8].



Natural Gas[edit]

Gas production from Fayetteville Shale

The formation holds natural gas in a fine-grained rock matrix which requires hydraulic fracturing to release the gas.[9] This process became cost-effective in some shales such as the Fayetteville after years of experimentation in the Barnett Shale in North Texas, especially when combined with horizontal drilling.

The Fayetteville Shale play began in July 2004 by Southwestern Energy Company in north-central Arkansas with the Thomas #1-9 vertical well in Conway County, Arkansas[10]. In February 2005, Southwestern Energy drilled the first horizontal well, the Seeco-Vaughan #4-22H, also in Conway County[11].

The US Energy Information Administration estimated that the 5,853 square miles (15,160 km2) shale play held 13,240 billion cubic ft (375 billion cubic meters) of unproved, technically recoverable gas.[7] The average well was estimated to produce 1.3 billion cubic feet of gas.[12]


Paleontology[edit]

Flora[edit]

It should be noted that, because the Fayetteville Formation is a marine unit, most of the plants found in the black shales must have been washed into the Carboniferous sea from a landmass. However one unit within the formation, the Weddington Sandstone Member, is a series of river deposited sand beds. Fossil plants from this unit were probably deposited closer to their source.

Artist's impression of a Lepidodendron

Fauna[edit]

Vertebrates[edit]

Echinoderms[edit]

Fossil of the upper portion of Taxocrinus (on the right)

Cephalopods[edit]

Fossil of Goniatites

Corals[edit]

Bivalves[edit]

Aviculopecten subcardiformis from the Logan Formation (Lower Carboniferous) of Wooster, Ohio (external mold).

Brachiopods[edit]

Gastropods[edit]

Platyceras sp. from Museo di Storia Naturale di Milano.

Arthropods[edit]

A life-reconstruction of the trilobite Paladin.

Ostracods[edit]

Bryozoans[edit]

Foraminifera[edit]

References[edit]

  1. ^ a b c d e f M. Gordon Jr. and T. W. Henry. 1993. Late Mississippian Productoid Brachiopods Inflatia, Keokukia, and Adairia, Ozark Region of Oklahoma and Arkansas. Paleontological Society Memoir 30:1-29
  2. ^ a b Freemen, T. Fossils of Arkansas. Arkansas Geologic Commission.
  3. ^ a b "Major Stratigraphic Layers of the Fayetteville Shale Formation". Chesapeake Energy, Inc. Retrieved July 25, 2011. 
  4. ^ a b c d Sando, W. 1969. Revision of Some of Girty's Invertebrate Fossils from the Fayetteville Shale (Mississippian) of Arkansas and Oklahoma: Part B- Corals. United States Geologic Survey Professional Paper 606
  5. ^ Branner, J. (1891). "Introduction". Arkansas Geological Survey Annual Report 1888. 4: xiii. 
  6. ^ a b Simonds, F.W. (1891). "The geology of Washington County". Arkansas Geological Survey Annual Report 1888. 4: 26, 42–49. 
  7. ^ a b Reed, Michael (June 2013). "Shale Play Should See Added Capacity Next 2 Years". Pipeline & Gas Journal. Houston, TX: Oildom Publishing Company. 240 (6): 46. 
  8. ^ Adams, George I.; Ulrich, E. O. (1904). "Zinc and lead deposits of northern Arkansas" (PDF). U. S. Geological Survey Professional Paper. 24. Retrieved 31 May 2018. 
  9. ^ "About the Fayetteville Shale". University of Arkansas. Retrieved July 25, 2011. 
  10. ^ Taylor, Larry. "Fayetteville Shale". Encyclopedia of Arkansas. Retrieved 31 May 2018. 
  11. ^ Shelby, Phillip (April 2008). "The Fayetteville Shale play of north-central Arkansas: a project update". AAPG Search and Discovery (10172 (2008)). Retrieved 31 May 2018. 
  12. ^ US Energy Information Administration, Annual Energy outlook 2012, accessed 14 Sept. 2013.
  13. ^ a b c d e f g Taylor, T., Eggard, D.,1967. Petrified Plants from the Upper Mississippian (Chester Series) of Arkansas. Transactions of the American Microscopical Society. 86: 4
  14. ^ Tomescu, A. 2001. Lyginopteris royalii sp. nov. from the Upper Mississippian of North America. Review of Paleobotany and Palynology. 116: 3-4
  15. ^ Dunn, M., Rothwell, G., Mapes, G. 2002.Additional observations on Rhynchosperma quinnii (Medullosaceae): a permineralized ovule from the Chesterian (Upper Mississippian) Fayetteville Formation of Arkansas. Journal of Botany. 89:11
  16. ^ Dunn, M., Rothwell, G., Mapes, G. 2003. On Paleozoic plants from marine strata: Trivena arkansana (Lyginopteridaceae) gen. et sp. nov., a lyginopterid from the Fayetteville Formation (middle Chesterian/Upper Mississippian) of Arkansas, USA. Journal of Botany. 90:8
  17. ^ Lund, R., Mapes, R. 1984. Carcharopsis wortheni from the Fayetteville Formation (Mississippian) of Arkansas. Journal of Paleontology. 58:3.
  18. ^ Alan Pradel; John G. Maisey; Paul Tafforeau; Royal H. Mapes; Jon Mallatt (2014). "A Palaeozoic shark with osteichthyan-like branchial arches". Nature. 509 (7502): 608–611. doi:10.1038/nature13195. PMID 24739974. 
  19. ^ a b c d e f g h i j k l m n o p q r s t u v w Strimple, Harrell L. (1977). "Chesterian (Upper Mississippian) and Morrowan (Lower Pennsylvanian) crinoids of northeastern Oklahoma and northwestern Arkansas" (PDF). Oklahoma Geological Survey Guidebook. 18: 171–176. Retrieved 30 January 2018. 
  20. ^ a b c Burdick, D., Strimple, H. 1973. Flexible Crinoids from the Fayetteville Formation (Chesterian) of Northeastern Oklahoma. Journal of Paleontology. 47:2
  21. ^ a b Horowitz, Alan S.; Macurda Jr, D. B. (1977). "Late Mississippian and Early Pennsylvanian blastoids from northeastern Oklahoma and northwestern Arkansas" (PDF). Oklahoma Geological Survey Guidebook. 18: 169–170. Retrieved 31 January 2018. 
  22. ^ Strimple, H. 1948. Notes on Phanocrinus from the Fayetteville Formation of Northeastern Oklahoma. Journal of Paleontology. 22:4
  23. ^ a b c d e f g h i j k l m n o Saunders, W. Bruce; Manger, Walter L.; Gordon Jr., Mackenzie (1977). "Upper Mississippian and Lower and Middle Pennsylvanian ammonoid biostratigraphy of northern Arkansas" (PDF). Oklahoma Geological Survey Guidebook. 18: 117–137. Retrieved 1 February 2018. 
  24. ^ a b c d e f g Mapes, R. 1966. Late Mississippian Lycopsid Branch from Arkansas. Oklahoma Geology Notes.
  25. ^ Doughouzhaeva L, Mapes, R., Mutvei, H. 1997. Beaks and radulae of Early Carboniferous goniatites. Lethia. 30:4
  26. ^ Easton, W. 1945. Kinkaid Corals from Illinois and Amplexoid Corals from the Chester of Illinois and Arkansas. Journal of Paleontology. 19:4
  27. ^ a b c d e f g h i j k l m n o p q r Pojeta, J. 1969. Revision of Some of Girty's Invertebrate Fossils from the Fayetteville Shale (Mississippian) of Arkansas and Oklahoma: Part C- Pelecypods. United States Geologic Survey Professional Paper 606
  28. ^ a b c d e f g Yochelson, E 1969. Revision of Some of Girty's Invertebrate Fossils from the Fayetteville Shale (Mississippian) of Arkansas and Oklahoma: Part C- Pelecypods. United States Geologic Survey Professional Paper 606
  29. ^ a b c d e f g h i j Sohn, I. 1969.Revision of Some of Girty's Invertebrate Fossils from the Fayetteville Shale (Mississippian) of Arkansas and Oklahoma: Part F- Ostracodes. United States Geologic Survey Professional Paper 606
  30. ^ Brezinski, David K. (31 March 2017). "Some New Late Mississippian Trilobites from Oklahoma and Arkansas". Annals of Carnegie Museum. 84 (2): 173–178. doi:10.2992/007.084.0203. 
  31. ^ Gordon, M. 1969.Revision of Some of Girty's Invertebrate Fossils from the Fayetteville Shale (Mississippian) of Arkansas and Oklahoma: Part E- Trilobites. United States Geologic Survey Professional Paper 606
  32. ^ a b c Sohn, I. G. (1977). "Late Mississippian and Early Pennsylvanian ostracoda from northern Arkansas - a preliminary survey" (PDF). Oklahoma Geological Survey Guidebook. 18: 149–159. Retrieved 31 January 2018. 
  33. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad Horowitz, Alan S. (1977). "Late Mississippian and Early Pennsylvanian bryozoan faunas of Arkansas and Oklahoma: a review" (PDF). Oklahoma Geological Survey Guidebook. 18: 101–105. Retrieved 3 February 2018. 
  34. ^ a b Brenckle, Paul (1977). "Foraminifers and other calcareous microfossils from Late Chesterian (Mississippian) strata of northern Arkansas" (PDF). Oklahoma Geological Survey Guidebook. 18: 73–87. Retrieved 3 February 2018.