Ferranti Argus

From Wikipedia, the free encyclopedia
Jump to: navigation, search

Ferranti's Argus computers were a line of industrial control computers offered from the 1960s into the 1980s. Originally designed for a military role, a re-packaged Argus was the first digital computer to be used to directly control an entire factory. They were widely used in a variety of roles in Europe, particularly in the UK, where a small number continue to serve as monitoring and control systems for nuclear reactors.

Original series[edit]

The original Argus was developed in 1958 as a ground-based control computer for the Bristol Bloodhound Mark 2 missile.[1] Along with general readiness and fire-control duties, the Argus had a unique function in this system. The Bloodhound had a radar dish in the nose of the missile that had to be locked down during launch due to the vibration of the solid fuel rocket boosters that got the missile up to speed. Once the boosters were burned out and ejected, two ramjet engines took over that provided smooth thrust, allowing the radar antenna to be unlocked and start tracking the target. The Argus calculated where the target would be relative to the missile at the point of burnout, feeding that to the missile before launch and thereby allowing it to slew the radar to the correct angle when it unlocked.[2]

During development, another team at Ferranti were positioning the system as a process control computer. Their first sale in this market was in 1962, to ICI, to operate their soda ash/ammonia plant at Fleetwood, Lancashire.[3][4] This was the first large factory to be controlled directly by a digital computer.[5][6] Other European sales followed.[7]

The Argus circuitry was based on germanium transistors with 0 and -6 volts representing binary 1 and 0, respectively. The computer was based on a 12-bit word length with 24-bit instructions. The arithmetic was handled in two parallel 6-bit ALUs operating at 500 kHz. Additions in the ALU took 12 µs, but adding in the memory access time meant simple instructions took about 20 µs. Double-length (24-bit) arithmetic operations were also provided. Data memory was supplied in a 12-bit, 4096 word, core memory store, while up to 64 instruction words were stored in a separate plugboard array, using ferrite pegs dropped into holes to create a "1". Op codes were 6 bits, registers 3 bits, index register (modifier) 2 bits and data address 13 bits.[8]

The original design was followed in 1963 by the single-ALU Argus 100, which was also intended for process control use. Unlike the original, the Argus 100 used a flat 24-bit addressing scheme with both data and code stored in a single memory. A smaller 5-bit opcode was used in order to simplify the basic logic and gain an address bit. The single ALU and other changes resulted in a basic operation time of 72 μs. One notable use of the Argus 100 was to control the Jodrell Bank Mark II telescope in 1964. With the 100's release, the original design was retroactively renamed Argus 200 as it was considered more powerful.

The design of the Argus 300 was started in 1963 as a much faster machine featuring a fully parallel-architecture arithmetic logic unit, as opposed to the earlier and much slower serial units. Its instruction set was nevertheless fully compatible with the Argus 100. The 300 was very successful and used throughout the 1960s in various industrial roles.

A variant of the 300 was the Argus 350, which allowed external access to its core to allow direct memory access. This improved performance of input/output, avoiding having to move data via code running on the processor. The 350 was used in various military simulators, including the Royal Navy for frigate, submarine and helicopter based anti-submarine training, and the Royal Air Force for a Bloodhound Mk.II simulator and the Vickers VC10 flight simulator built at Redifon and delivered to RAF Brize Norton in 1967. The model used on the VC10 Simulator was a 3520B, this meant that it had (20)kWords of memory and a (B)acking Store. Redifon also used the 350 on the Air Canada DC9 flight simulator that was installed in Montreal in the Spring of 1966.The 350's were delivered in the 1967 to 1969 timeframe.

Silicon replacements[edit]

The design of the Argus 400 started at the same time as the Argus 300. In logical terms the 400 was similar to the earlier 100, using serial ALUs. However, it featured an entirely new electrical system. Previous machines used germanium transistors to form the logic gates. The Argus 400 used silicon transistors in a NOR-logic designed by Ferranti Wythenshawe called MicroNOR II, with more "conventional" logic where 0 and +4.5 represented binary 1 and 0, respectively. The rest of the world however used 0 volts to represent 0 and + 2.4 (to 5) volts to represent 1. This was called NAND logic. They are in fact both the same circuitry. When Texas Instruments brought out their “74” series of integrated circuits the specification of MicroNOR II was changed from 4.5 volts to 5 volts so the two families could work together. The machine was packaged to fit into a standard Air Transport Rack. Multilayer PCBs were not routine in 1963 and Ferranti developed processes for bonding the boards and plating through the circuit boards. The drawing office had to learn how to design multilayer boards. which was first laid out on tape then transferred to film. It took around two years for the Argus 400 to go into production.

Argus 500

The Argus 500, designed about 3 years later, used parallel arithmetic and was much faster. It was designed to be plugged into a larger 19 inch rack mounted frame, together with up to four core store (memory) units. The Argus 400 was repackaged to be the same as the Argus 500 and the two machines were plug compatible. The Argus 400 used 18 small PCBs for its CPU each of which was wire-wrapped to the backplane using 70 miniature wire wraps. Removing a card was tedious. The Argus 500 initially used the same packages, and also wire-wrap, on larger boards, but later versions employed dual-in-line ICs which were soldered flat onto the PCB and were much easier to remove.

Like the earlier designs, the 400 and 500 used the same 14-bit address space and 24-bit instruction set and were compatible. The 500 added new instructions that used three-bits of the accumulator for offset indexing as well. Both machines ran at a 4 MHz basic clock cycle, much faster than the earlier machines' 500 kHz. Both used core memory which was available in two cycle times, The Argus 400 used a 2 μs core whereas the Argus 500 had 2 μs in earlier machines and 1 μs for later ones, doubling performance. The difference between the 400 and 500 was similar to the split between the 100 and 300, in that the 500 had a parallel ALU and the 400 was serial. The Argus 400 had an add time (two 24 bit numbers of 12 μs. The Argus 500 (with 1 μs store) took 3 μs. Divide (the longest instruction) took 156 μs on the Argus 400 and the Argus 500 took 9 μs. The Argus 500 was of course much more expensive. Typical Argus 500 installations were chemical plants (process control) and nuclear power stations (process monitoring). A later application was for Police Command and Control installations, one of the more famous ones being for Strathclyde Police in Glasgow. This system provided the first visual display of resource locations using maps provided by 35mm slide projectors projecting through a port-hole in the tube of the VDU screen.

An Argus 400 replaced the 100 at Jodrell Bank in 1971.[9] There was a special version of the Argus 400 made for the Boadicea seat booking network for BOAC. This removed the multiply and divide functions as these used a significant number of expensive JK flip-flops and it was cost effective at the time to save these 24 and a few other components. Overall, the 500 proved to be one of Ferranti's best-selling products, and found especially wide use on oil platforms during the opening of the North Sea oil fields during the 1970s.[10]

Argus 600 and 700[edit]

Argus 700G model MIPS ratings[11]
(single processor)
Million instructions per second
Argus 700 GDL 0.7
Argus 700 GL 0.8
Argus 700 GX 2
Argus 700 GZ 4

Breaking with the past, the next series of Argus machines were completely new designs and not backward compatible. The Argus 600 was an 8-bit machine, and this was followed by the Argus 700 which used 16-bit architecture. Design of the 700 started around 1968/9 and the range was still in production in the mid 1980s achieving international success for industrial and military applications. The 700 is still operational at several British nuclear power stations in 2010 in control and data processing applications. It was also used as a production control platform for companies such as Kodak.

The Argus 700 could be configured in shared memory multi-processor configurations.[11]

The Argus 700 also played an important historical role in the development of packet switching networks in the UK. These machines were used by Ferranti during early experiments at the General Post Office as the basis for early routers.[12] In this respect they are similar to the Interface Message Processors built in the US to serve a similar role during the development of the Internet.[13]

Over 70 Argus 700G processors were used in the control and instrumentation systems of the Torness nuclear power station, which had a far more sophisticated control system than earlier members of the advanced gas-cooled reactor fleet, including Digital Direct Control (DDC) of the reactors. When first installed it was probably the most sophisticated and complex computerised control system for a nuclear power station worldwide; the system was implemented using the CORAL high-level programming language. Each reactor in the dual reactor station had 10 input multiplexing computers, 11 control dual-processor computers, and a supervisory triple-processor computer with a standby backup.[11][14]


The M700 series of computers was based on the architecture and instruction set of the Ferranti Argus 700 computer series. Both M700 computers and Argus 700 computers have a common overall instruction set. However, particular models do not necessarily implement the complete instruction set. M700 included a range of computers which were all based on the same architectural features and instruction set ensuring a high level of compatibility and interchangeability in hardware and software terms. Within these limits there existed different implementations from more than one manufacturer to reflect specific commercial and application requirements.[15]


  1. ^ "Ferranti Argus 700", The Centre for Computing History
  2. ^ Andrew Wylie, "The Ferranti Argus Computers", 2006
  3. ^ Jonathan Aylen, "Bloodhound on my Trail: Building the Ferranti Argus Process Control Computer", International Journal for the History of Engineering & Technology, Volume 82 Number 1 (January 2012), pp. 1-36
  4. ^ Jonathan Aylen (February 2008). ""Bloodhound on my Trail" - Ferranti's adaptation of military hardware to process control computer" (PDF). University of Manchester. Retrieved 3 July 2014. 
  5. ^ "Process-control computers make a hit with chemical manufacturers", New Scientist, 15 October 1964, p. 165
  6. ^ "Process Control: Concepts Dynamics And Applications", PHI Learning, 2010, p. 490
  7. ^ "Ferranti Argus Computer for Belgian Power Station will Monitor Boiler and Turbo-generator Set", Journal of Electronics and Control", Volume 14 Issue 3 (March 1963), p. 345
  8. ^ "Ferranti Argus: Process-Control Computer System", Ferranti, 1961
  9. ^ The MKII Radio Telescope
  10. ^ Clare Smyth, "Flourishing jungle of minicomputers", New Scientist, 6 June 1974, p. 602
  11. ^ a b c W.J.Hill, N.M.Mitson (8 May 1990). Building of the Auto Control Software for Torness NPS (PDF) (Report). The Institution of Nuclear Engineers. p. 25. Retrieved 8 October 2016. 
  12. ^ "Some Design Aspects of a Public Packet Switched Network", Second International Conference on Computer Communication, Stockholm, August 1974, pp. 199-213
  13. ^ "A Technical History of the ARPANET - A Technical Tour", THINK Protocols team, Accessed 19 October 2012.
  14. ^ Computerization of Operation and Maintenance for Nuclear Power Plants (PDF) (Report). IAEA. July 1995. pp. 159–168. ISSN 1011-4289. IAEA-TECDOC-808. Retrieved 8 October 2016. 
  15. ^ "Defence Standard 00-21 (Part 2)/Issue 2 - M700 Computers Part 2: Class 1" (PDF). DStan: UK Defence Standardization. UK Ministry of Defence. 9 Dec 1983. Archived from the original (PDF) on 13 May 2005.