# 5000 (number)

(Redirected from Five thousand)
 ← 4999 5000 5001 →
Cardinalfive thousand
Ordinal5000th
(five thousandth)
Factorization23 × 54
Greek numeral,Ε´
Roman numeralV
Unicode symbol(s)V, v, ↁ
Binary10011100010002
Ternary202120123
Senary350526
Octal116108
Duodecimal2A8812

5000 (five thousand) is the natural number following 4999 and preceding 5001. Five thousand is the largest isogrammic number in the English language.

## Selected numbers in the range 5001–5999

### 5200 to 5299

${\displaystyle 5280=-{\sqrt[{3}]{j\left({\scriptstyle {\frac {1}{2}}}\left(1+i{\sqrt {67}}\,\right)\right)}}.}$

### 5400 to 5499

• 5402 – number of ways in which one million can be expressed as the sum of two prime numbers
• 5405 – member of a Ruth–Aaron pair with 5406 (either definition)
• 5406 – member of a Ruth–Aaron pair with 5405 (either definition)
• 5419 – Cuban prime of the form x = y + 1[6]
• 5441 – Sophie Germain prime, super-prime
• 5456tetrahedral number[14]
• 5459 – highly cototient number[9]
• 5460 – triangular number
• 5461super-Poulet number,[15] centered heptagonal number[7]
• 5476 = 742
• 5483 – safe prime

### 5600 to 5699

• 5623super-prime
• 5625 = 752, centered octagonal number[2]
• 5631 – number of compositions of 15 whose run-lengths are either weakly increasing or weakly decreasing[20]
• 5639 – Sophie Germain prime, safe prime
• 5651 – super-prime
• 5659 – happy prime, completes the eleventh prime quadruplet set
• 5662 – decagonal number[4]
• 5671 – triangular number

### 5800 to 5899

• 5801super-prime
• 5807 – safe prime, balanced prime
• 5832 = 183
• 5842 – member of the Padovan sequence[27]
• 5849 – Sophie Germain prime
• 5869 – super-prime
• 5879 – safe prime, highly cototient number[9]
• 5886 – triangular number

### 5900 to 5999

• 5903 – Sophie Germain prime
• 5913 – sum of the first seven factorials
• 5927 – safe prime
• 5929 = 772, centered octagonal number[2]
• 5939 – safe prime
• 5967 – decagonal number[4]
• 5984 – tetrahedral number[14]
• 5995 – triangular number

### Prime numbers

There are 114 prime numbers between 5000 and 6000:[28][29]

5003, 5009, 5011, 5021, 5023, 5039, 5051, 5059, 5077, 5081, 5087, 5099, 5101, 5107, 5113, 5119, 5147, 5153, 5167, 5171, 5179, 5189, 5197, 5209, 5227, 5231, 5233, 5237, 5261, 5273, 5279, 5281, 5297, 5303, 5309, 5323, 5333, 5347, 5351, 5381, 5387, 5393, 5399, 5407, 5413, 5417, 5419, 5431, 5437, 5441, 5443, 5449, 5471, 5477, 5479, 5483, 5501, 5503, 5507, 5519, 5521, 5527, 5531, 5557, 5563, 5569, 5573, 5581, 5591, 5623, 5639, 5641, 5647, 5651, 5653, 5657, 5659, 5669, 5683, 5689, 5693, 5701, 5711, 5717, 5737, 5741, 5743, 5749, 5779, 5783, 5791, 5801, 5807, 5813, 5821, 5827, 5839, 5843, 5849, 5851, 5857, 5861, 5867, 5869, 5879, 5881, 5897, 5903, 5923, 5927, 5939, 5953, 5981, 5987

## References

1. ^ "Sloane's A088054 : Factorial primes". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
2. ^ a b c d "Sloane's A016754 : Odd squares: a(n) = (2n+1)^2. Also centered octagonal numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
3. ^ a b "Sloane's A006886 : Kaprekar numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
4. ^ a b c d "Sloane's A001107 : 10-gonal (or decagonal) numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
5. "Sloane's A006562 : Balanced primes". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
6. ^ a b "Sloane's A002407 : Cuban primes". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
7. ^ a b c "Sloane's A069099 : Centered heptagonal numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
8. ^ a b c "Sloane's A001106 : 9-gonal (or enneagonal or nonagonal) numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
9. ^ a b c "Sloane's A100827 : Highly cototient numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
10. ^ "Weights and measures". www.merriam-webster.com. Merriam-Webster. Retrieved 11 March 2021.
11. ^
12. ^ "Sloane's A005900 : Octahedral numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
13. ^ "Sloane's A076980 : Leyland numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
14. ^ a b "Sloane's A000292 : Tetrahedral numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
15. ^ "Sloane's A050217 : Super-Poulet numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
16. ^ "Sloane's A000330 : Square pyramidal numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
17. ^ "Sloane's A000078 : Tetranacci numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
18. ^ "Sloane's A002411 : Pentagonal pyramidal numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
19. ^ "Sloane's A082897 : Perfect totient numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
20. ^ Sloane, N. J. A. (ed.). "Sequence A332835 (Number of compositions of n whose run-lengths are either weakly increasing or weakly decreasing)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-06-02.
21. ^ "Sloane's A051015 : Zeisel numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
22. ^ "Sloane's A006972 : Lucas-Carmichael numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
23. ^ "Sloane's A000129 : Pell numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
24. ^ "Sloane's A002559 : Markoff (or Markov) numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
25. ^ "Sloane's A000073 : Tribonacci numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
26. ^ "Sloane's A001006 : Motzkin numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
27. ^ "Sloane's A000931 : Padovan sequence". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-11.
28. ^ Sloane, N. J. A. (ed.). "Sequence A038823 (Number of primes between n*1000 and (n+1)*1000)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
29. ^ Stein, William A. (10 February 2017). "The Riemann Hypothesis and The Birch and Swinnerton-Dyer Conjecture". wstein.org. Retrieved 6 February 2021.