Flat function

From Wikipedia, the free encyclopedia
The function is flat at .

In mathematics, especially real analysis, a flat function is a smooth function all of whose derivatives vanish at a given point . The flat functions are, in some sense, the antitheses of the analytic functions. An analytic function is given by a convergent power series close to some point :

In the case of a flat function, all derivatives vanish at , i.e. for all . This means that a meaningful Taylor series expansion in a neighbourhood of is impossible. In the language of Taylor's theorem, the non-constant part of the function always lies in the remainder for all .

The function need not be flat at just one point. Trivially, constant functions on are flat everywhere. But there are also other, less trivial, examples.

Example[edit]

The function defined by

is flat at . Thus, this is an example of a non-analytic smooth function. The pathological nature of this example is partially illuminated by the fact that its extension to the complex numbers is, in fact, not differentiable.

References[edit]

  • Glaister, P. (December 1991), A Flat Function with Some Interesting Properties and an Application, The Mathematical Gazette, Vol. 75, No. 474, pp. 438–440, JSTOR 3618627