Fluorine-18

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search
Fluorine-18,  18F
Fluorine-18 decay.svg
Decay over 24 hours
General
Name, symbolFluorine-18,18F
Neutrons9
Protons9
Nuclide data
Natural abundanceRadioisotope
Half-life109.771(20) min
Decay products18O
Isotope mass18.0009380(6) u
Spin1+
Excess energy873.431± 0.593 keV
Binding energy137369.199± 0.593 keV
Decay modes
Decay modeDecay energy (MeV)
Positron emission (97%)0.6335
Electron capture (3%)1.6555
Complete table of nuclides

Fluorine-18 (18F) is a fluorine radioisotope which is an important source of positrons. It has a mass of 18.0009380(6) u and its half-life is 109.771(20) minutes. It decays by positron emission 97% of the time and electron capture 3% of the time. Both modes of decay yield stable oxygen-18.

Synthesis[edit]

In the radiopharmaceutical industry, F-18 is made using either a cyclotron or linear particle accelerator to bombard a target, usually of pure or enriched oxygen-18-water [1] with high energy protons (typically ~18 MeV protons). The fluorine produced is in the form of a water solution of F-18 fluoride, which is then used in a rapid chemical synthesis of the radiopharmaceutical. The organic O-18 pharmaceutical molecule is not made before the production of the radiopharmaceutical, as high energy protons destroy such molecules. Radiopharmaceuticals using fluorine must therefore be synthesized after the F-18 has been produced.

Chemistry[edit]

Fluorine-18 is often substituted for a hydroxyl group in a radiotracer parent molecule, due to similar steric and electrostatic properties. This may however be problematic in certain applications due to possible changes in the molecule polarity.

Applications[edit]

Fluorine-18 is one of the oldest tracers used in positron emission tomography (PET), having been in use since the 1960s.[2] Its significance is due to both its short half-life and the emission of high energy positrons (511-keV[3]) when decaying.

Tracers include sodium fluoride which can be useful for skeletal imaging as it displays high and rapid bone uptake accompanied by very rapid blood clearance, which results in a high bone-to-background ratio in a short time[4] and fluorodeoxyglucose (FDG), where the 18F substitutes a hydroxyl. New dioxaborolane chemistry enables radioactive fluoride (18F) labeling of antibodies, which allows for positron emission tomography (PET) imaging of cancer.[5]

References[edit]

  1. ^ Fowler J. S. and Wolf A. P. (1982) The synthesis of carbon-11, fluorine-18 and nitrogen-13 labeled radiotracers for biomedical applications. Nucl. Sci. Ser. Natl Acad. Sci. Natl Res. Council Monogr. 1982.
  2. ^ Blau, Monte; Ganatra, Ramanik; Bender, Merrill A. (January 1972). "18F-fluoride for bone imaging". Seminars in Nuclear Medicine. 2 (1): 31–37. doi:10.1016/S0001-2998(72)80005-9.
  3. ^ Grant, F. D.; Fahey, F. H.; Packard, A. B.; Davis, R. T.; Alavi, A.; Treves, S. T. (12 December 2007). "Skeletal PET with 18F-Fluoride: Applying New Technology to an Old Tracer". Journal of Nuclear Medicine. 49 (1): 68–78. doi:10.2967/jnumed.106.037200. PMID 18077529.
  4. ^ Ordonez, A. A.; DeMarco, V. P.; Klunk, M. H.; Pokkali, S.; Jain, S.K. (October 2015). "Imaging Chronic Tuberculous Lesions Using Sodium [18F]Fluoride Positron Emission Tomography in Mice". Molecular Imaging and Biology. 17 (5): 609–614. doi:10.1007/s11307-015-0836-6. PMC 4561601.
  5. ^ Rodriguez, Erik A.; Wang, Ye; Crisp, Jessica L.; Vera, David R.; Tsien, Roger Y.; Ting, Richard (2016-04-27). "New Dioxaborolane Chemistry Enables [18F]-Positron-Emitting, Fluorescent [18F]-Multimodality Biomolecule Generation from the Solid Phase". Bioconjugate Chemistry. 27 (5): 1390–1399. doi:10.1021/acs.bioconjchem.6b00164. PMC 4916912. PMID 27064381.


Lighter:
fluorine-17
Fluorine-18 is an
isotope of fluorine
Heavier:
fluorine-19
Decay product of:
neon-18
Decay chain
of fluorine-18
Decays to:
oxygen-18