Flux (metabolism)

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Not to be confused with Magnetic flux.
For other uses of "Flux", see Flux (disambiguation).

Flux, or metabolic flux is the rate of turnover of molecules through a metabolic pathway. Flux is regulated by the enzymes involved in a pathway. Within cells, regulation of flux is vital for all metabolic pathways to regulate the pathway's activity under different conditions.[1] Flux is therefore of great interest in metabolic network modelling, where it is analysed via flux balance analysis.

In this manner, flux is the movement of matter through metabolic networks that are connected by metabolites and cofactors, and is therefore a way of describing the activity of the metabolic network as a whole using a single characteristic.

Metabolic Flux[edit]

It is easiest to describe the flux of metabolites through a pathway by considering the reaction steps individually. The flux of the metabolites through each reaction (J) is the rate of the forward reaction (Vf), less that of the reverse reaction (Vr):[2]

At equilibrium, there is no flux. Furthermore, it is observed that throughout a steady state pathway, the flux is usually determined by the rate determining step of the reaction.

Control of metabolic flux[edit]

Control of flux through a metabolic pathway requires that

  • The metabolic flux in the rate determining step varies based on the organisms metabolic needs.
  • The change in flux that occurs due to the above requirement is communicated to the rest of the metabolic pathway in order to maintain a steady state.[3]

Metabolic networks[edit]

Cellular metabolism is represented by a large number of metabolic reactions involving the conversion of the carbon source (usually glucose) into the building blocks needed for macromolecular biosynthesis. These reactions form metabolic networks within cells. These networks can then themselves be used to study metabolism within cells.

To allow these networks to interact, a tight connection between them is necessary. This connection is provided by usage of common cofactors such as ATP, ADP, NADH and NADPH. In addition to this, sharing of some metabolites between the different networks further tightens the connections between the different networks.

Control of metabolic networks[edit]

Existing metabolic networks regulate the movement of chemicals through their enzymatic steps by mostly regulating enzymes that catalyze irreversible reactions, while the movement of chemicals through reversible steps is generally unregulated directly.[4] As a result, the movement of products through a metabolic network is governed by simple chemical equilibria, with specific key enzymes that are subject to regulation. This regulation may be indirect, in the case of an enzyme being regulated by some cell signalling mechanism, or it may be direct, as in the case of allosteric regulation, where metabolites from a different portion of a metabolic network bind directly to and affect the catalytic function of other enzymes in order to maintain homeostasis.

Fluxes and genotype[edit]

Metabolic fluxes are a function of gene expression, translation, post translational protein modifications and protein-metabolite interactions.[5]

Fluxes and phenotype[edit]

The function of the central carbon metabolism (metabolism of glucose) has been fine-tuned to exactly meet the needs of the building blocks and Gibbs free energy in conjunction with cell growth. There is therefore tight regulation of the fluxes through the central carbon metabolism.

The flux in a reaction can be defined based on one of three things

  • The activity of the enzyme catalysing the reaction
  • The properties of the enzyme
  • The metabolite concentration affecting enzyme activity.[6]

Considering the above, the metabolic fluxes can be described as the ultimate representation of the cellular phenotype when expressed under certain conditions.

Roles of metabolic flux in cells[edit]

Regulation of mammalian cell growth[edit]

Research has shown that cells undergoing rapid growth have shown changes in their metabolism.[7] These changes are observed with regards to glucose metabolism. The changes in metabolism occur because the rate of metabolism controls various signal transduction pathways that coordinate the activation of transcription factors as well as determining cell-cycle progress.

Growing cells require synthesis of new nucleotides, membranes and protein components.[8][9] These materials can be obtained from carbon metabolism (e.g. glucose metabolism) or from peripheral metabolism. The enhanced flux observed in abnormally growing cells is brought about by high glucose uptake.

Cancer[edit]

Metabolic flux and more specifically how metabolism is affected due to changes in the various pathways has grown in importance since it was observed that tumour cells exhibit enhanced glucose metabolism compared to normal cells.[10] Through studying these changes, it is possible to better understand the mechanisms of cell growth and where possible develop treatments to counter the effects of enhanced metabolism.

Measuring fluxes[edit]

There are several ways of measuring fluxes, however all of these are indirect. Due to this, these methods make one key assumption which is that all fluxes into a given intracellular metabolite pool balance all the fluxes out of the pool.[11]

This assumption means that for a given metabolic network the balances around each metabolite impose a number of constraints on the system.

The techniques currently used mainly revolve around the use of either Nuclear magnetic resonance (NMR) or gas chromatography-mass spectrometry (GC-MS).

In order to avoid the complexity of data analysis, a simpler method of estimating flux ratios has recently been developed which is based on cofeeding unlabelled and uniformly 13C labelled glucose. The metabolic intermediate patterns are then analysed using NMR spectroscopy. This method can also be used to determine the metabolic network topologies.

See also[edit]

References[edit]

  1. ^ Donald Voet and Judith Voet, Biochemistry, 2nd Edition, pp439,1995
  2. ^ Donald Voet and Judith Voet, Biochemistry, 4th Edition, p620, 2011
  3. ^ Donald Voet and Judith Voet, Biochemistry, 4th Edition, p620, 2011
  4. ^ David L. Nelson and Michael M. Cox, Lenhinger Principles of Biochemistry, 4th Edition, pp.571 and 592, 2004
  5. ^ J. Nielsen, It's all about Metabolic Fluxes, Journal of Bacteriology, 2003, p.7031-7035
  6. ^ J. Nielsen, It's all about Metabolic Fluxes, Journal of Bacteriology, 2003, p.7031-7035
  7. ^ J.W.Locasale and L.C Cantley, Metabolic Flux and the regulation of mammalian cell growth, Cell Press:Cell Metabolism, 2011, pp.443-450
  8. ^ J. Nielsen, It's all about Metabolic Fluxes, Journal of Bacteriology, 2003, p.7031-7035
  9. ^ J.W.Locasale and L.C Cantley, Metabolic Flux and the regulation of mammalian cell growth, Cell Press:Cell Metabolism, 2011, pp.443-450
  10. ^ J.W.Locasale and L.C Cantley, Metabolic Flux and the regulation of mammalian cell growth, Cell Press:Cell Metabolism, 2011, pp.443-450
  11. ^ J. Nielsen, It's all about Metabolic Fluxes, Journal of Bacteriology, 2003, p.7031-7035

External links[edit]