From Wikipedia, the free encyclopedia
Jump to navigation Jump to search
Clinical data
Trade namesLasix, others
Other namesFrusemide
License data
  • AU: C
Routes of
By mouth, intravenous, intramuscular
ATC code
Legal status
Legal status
  • AU: S4 (Prescription only)
  • UK: POM (Prescription only)
  • US: ℞-only
  • In general: ℞ (Prescription only)
Pharmacokinetic data
Metabolismliver and kidney glucuronidation
Onset of action30 to 60 min (PO), 5 min (IV)[1]
Elimination half-lifeup to 100 minutes
ExcretionKidney 66%, Bile duct 33%
  • 4-Chloro-2-[(furan-2-ylmethyl)amino]-5-sulfamoylbenzoic acid
CAS Number
PubChem CID
CompTox Dashboard (EPA)
ECHA InfoCard100.000.185 Edit this at Wikidata
Chemical and physical data
Molar mass330.74 g·mol−1
3D model (JSmol)
  • o1cccc1CNc(cc2Cl)c(C(=O)O)cc2S(=O)(=O)N
  • InChI=1S/C12H11ClN2O5S/c13-9-5-10(15-6-7-2-1-3-20-7)8(12(16)17)4-11(9)21(14,18)19/h1-5,15H,6H2,(H,16,17)(H2,14,18,19) checkY

Furosemide, sold under the brand name Lasix among others, is a loop diuretic medication used to treat fluid build-up due to heart failure, liver scarring, or kidney disease.[1] It may also be used for the treatment of high blood pressure.[1] It can be taken by injection into a vein or by mouth.[1] When taken by mouth, it typically begins working within an hour, while intravenously, it typically begins working within five minutes.[1]

Common side effects include feeling lightheaded with standing, ringing in the ears, and sensitivity to light.[1] Potentially serious side effects include electrolyte abnormalities, low blood pressure, and hearing loss.[1] Blood tests are recommended regularly for those on treatment.[1] Furosemide is a type of loop diuretic that works by decreasing the reabsorption of sodium by the kidneys.[1] Common side effects of furosemide injection include hypokalemia (low potassium level), hypotension (low blood pressure), and dizziness.[2]

Furosemide was patented in 1959 and approved for medical use in 1964.[3] It is on the World Health Organization's List of Essential Medicines.[4] In the United States, it is available as a generic medication.[1] In 2017, it was the eighteenth most commonly prescribed medication in the United States, with more than 29 million prescriptions.[5][6] It is on the World Anti-Doping Agency's banned drug list due to concerns that it may mask other drugs.[7] It has also been used in race horses for the treatment and prevention of exercise-induced pulmonary hemorrhage.[8][9]

Medical uses[edit]

Furosemide (Lasix) for injection

Furosemide is primarily used for the treatment of edema, but also in some cases of hypertension (where there is also kidney or heart impairment).[10] It is often viewed as a first-line agent in most people with edema caused by congestive heart failure.[1] Compared with furosemide, however, torsemide is associated with a lower risk of rehospitalization for heart failure and an improvement in New York Heart Association class of heart failure but no difference in the risk of death.[11][12] Torsemide may also be safer than furosemide.[13][14]

Furosemide is also used for liver cirrhosis, kidney impairment, nephrotic syndrome, in adjunct therapy for swelling of the brain or lungs where rapid diuresis is required (IV injection), and in the management of severe hypercalcemia in combination with adequate rehydration.[15]

Kidney disease[edit]

In chronic kidney diseases with hypoalbuminemia, it is used along with albumin to increase diuresis. It is also used along with albumin in nephrotic syndrome to reduce edema. [16]

Other information[edit]

  • It is mainly excreted by tubular secretion in the kidney. In kidney impairment, clearance is reduced, increasing the risk of adverse effects.[1] Lower initial doses are recommended in older patients (to minimize side-effects) and high doses may be needed in kidney failure.[17] It can also cause kidney damage; this is mainly by loss of excessive fluid (i.e. dehydration), and is usually reversible.
  • Furosemide acts within 1 hour of oral administration (after IV injection, the peak effect is within 30 minutes). Diuresis is usually complete within 6–8 hours of oral administration, but there is significant variation between individuals.[18]

Adverse effects[edit]

Furosemide also can lead to gout caused by hyperuricemia. Hyperglycemia is also a common side effect.

The tendency, as for all loop diuretics, to cause low serum potassium concentration (hypokalemia) has given rise to combination products, either with potassium or with the potassium-sparing diuretic amiloride (Co-amilofruse). Other electrolyte abnormalities that can result from furosemide use include hyponatremia, hypochloremia, hypomagnesemia, and hypocalcemia.[19]

In the treatment of heart failure, many studies have shown that the long-term use of furosemide can cause varying degrees of thiamine deficiency, so thiamine supplementation is also suggested.[20]

Although disputed,[21] it is considered ototoxic: "usually with large intravenous doses and rapid administration and in renal impairment".[22]

Other precautions include: nephrotoxicity, sulfonamide (sulfa) allergy, and increases free thyroid hormone effects with large doses.[23]


Furosemide has potential interactions with these medications:[24]

Potentially hazardous interactions with other drugs:

Mechanism of action[edit]

Furosemide, like other loop diuretics, acts by inhibiting the luminal Na-K-Cl cotransporter in the thick ascending limb of the loop of Henle, by binding to the chloride transport channel, thus causing sodium, chloride, and potassium loss in urine.[25]

The action on the distal tubules is independent of any inhibitory effect on carbonic anhydrase or aldosterone; it also abolishes the corticomedullary osmotic gradient and blocks negative, as well as positive, free water clearance. Because of the large NaCl absorptive capacity of the loop of Henle, diuresis is not limited by development of acidosis, as it is with the carbonic anhydrase inhibitors.

Additionally, furosemide is a noncompetitive subtype-specific blocker of GABA-A receptors.[26][27][28] Furosemide has been reported to reversibly antagonize GABA-evoked currents of α6β2γ2 receptors at μM concentrations, but not α1β2γ2 receptors.[26][28] During development, the α6β2γ2 receptor increases in expression in cerebellar granule neurons, corresponding to increased sensitivity to furosemide.[27]


  • Molecular weight (daltons) 330.7
  • % Bioavailability 47-70%
    • Bioavailability with end-stage renal disease 43 - 46%[29][30]
  • % Protein binding 91–99[31]
  • Volume of distribution (L/kg) 0.07 – 0.2[32][33]
    • Volume of distribution may be higher in patients with cirrhosis or nephrotic syndrome[32]
  • Excretion
    • % Excreted in urine (% of total dose) 60 - 90[32][33]
    • % Excreted unchanged in urine (% of total dose) 53.1 - 58.8 [34]
    • % Excreted in feces (% of total dose) 7 - 9[18]
    • % Excreted in bile (% of total dose) 6 - 9[33]
  • Approximately 10% is metabolized by the liver in healthy individuals, but this percentage may be greater in individuals with severe kidney failure [33]
  • Renal clearance (mL/min/kg) 2.0[32]
  • Elimination half-life (hrs) 2[31]
    • Prolonged in congestive heart failure (mean 3.4 hrs)[32][35]
    • Prolonged in severe kidney failure (4 - 6 hrs)[36] and anephric patients (1.5-9 hrs)[33]
  • Time to peak concentration (hrs)
    • Intravenous administration 0.3[37]
    • Oral solution 0.83[31]
    • Oral tablet 1.45[31]

The pharmacokinetics of furosemide are apparently not significantly altered by food.[38]

No direct relationship has been found between furosemide concentration in the plasma and furosemide efficacy. Efficacy depends upon the concentration of furosemide in urine.[18]


Furosemide is the INN and BAN.[39] The previous BAN was frusemide.

Brand names under which furosemide is marketed include: Aisemide, Apo-Furosemide, Beronald, Desdemin, Discoid, Diural, Diurapid, Dryptal, Durafurid, Edemid, Errolon, Eutensin, Flusapex, Frudix, Frusemide, Frusetic, Frusid, Fulsix, Fuluvamide, Furesis, Furix, Furo-Puren, Furon, Furosedon, Fusid.frusone, Hydro-rapid, Impugan, Katlex, Lasilix, Lasix, Lodix, Lowpston, Macasirool, Mirfat, Nicorol, Odemase, Oedemex, Profemin, Rosemide, Rusyde, Salix, Seguril, Teva-Furosemide, Trofurit, Uremide, and Urex.

Veterinary uses[edit]

The diuretic effects are put to use most commonly in horses to prevent bleeding during a race. Sometime in the early 1970s, furosemide's ability to prevent, or at least greatly reduce, the incidence of bleeding (exercise-induced pulmonary hemorrhage) by horses during races was discovered accidentally. In the United States of America, pursuant to the racing rules of most states, horses that bleed from the nostrils three times are permanently barred from racing. Clinical trials followed, and by decade's end, racing commissions in some states in the USA began legalizing its use on race horses. On 1 September 1995, New York became the last state in the United States to approve such use, after years of refusing to consider doing so. Some states allow its use for all racehorses; some allow it only for confirmed "bleeders". Its use for this purpose is still prohibited in many other countries.

Furosemide is also used in horses for pulmonary edema, congestive heart failure (in combination with other drugs), and allergic reactions. Although it increases circulation to the kidneys, it does not help kidney function, and is not recommended for kidney disease.

It is also used to treat congestive heart failure (pulmonary edema, pleural effusion, and/or ascites) in cats and dogs.[40] It can also be used in an attempt to promote urine production in anuric or oliguric acute kidney failure.


Furosemide is injected either intramuscularly or intravenously, usually 0.5-1.0 mg/kg twice/day, although less before a horse is raced. As with many diuretics, it can cause dehydration and electrolyte imbalance, including loss of potassium, calcium, sodium, and magnesium. Excessive use of furosemide will most likely lead to a metabolic alkalosis due to hypochloremia and hypokalemia. The drug should, therefore, not be used in horses that are dehydrated or experiencing kidney failure. It should be used with caution in horses with liver problems or electrolyte abnormalities. Overdose may lead to dehydration, change in drinking patterns and urination, seizures, gastrointestinal problems, kidney damage, lethargy, collapse, and coma.

Furosemide should be used with caution when combined with corticosteroids (as this increases the risk of electrolyte imbalance), aminoglycoside antibiotics (increases risk of kidney or ear damage), and trimethoprim sulfa (causes decreased platelet count). It may also cause interactions with anesthetics, so its use should be related to the veterinarian if the animal is going into surgery, and it decreases the kidneys' ability to excrete aspirin, so dosages will need to be adjusted if combined with that drug.

Furosemide may increase the risk of digoxin toxicity due to hypokalemia.

The drug is best not used during pregnancy or in a lactating mare, as it has been shown to be passed through the placenta and milk in studies with other species. It should not be used in horses with pituitary pars intermedia dysfunction (Cushings).

Furosemide is detectable in urine 36–72 hours following injection. Its use is restricted by most equestrian organizations.

In April 2019, it was announced that Lasix would be banned from use within 24 hours of a horse racing starting in 2021.[41]


  1. ^ a b c d e f g h i j k l "Furosemide". The American Society of Health-System Pharmacists. Archived from the original on 2015-11-19. Retrieved 23 October 2015.
  2. ^ "Coronavirus (COVID-19) Update: December 22, 2020". U.S. Food and Drug Administration (Press release). 22 December 2020. Retrieved 22 December 2020. This article incorporates text from this source, which is in the public domain.
  3. ^ Fischer, Jnos; Ganellin, C. Robin (2006). Analogue-based Drug Discovery. John Wiley & Sons. p. 458. ISBN 9783527607495.
  4. ^ World Health Organization (2019). World Health Organization model list of essential medicines: 21st list 2019. Geneva: World Health Organization. hdl:10665/325771. WHO/MVP/EMP/IAU/2019.06. License: CC BY-NC-SA 3.0 IGO.
  5. ^ "The Top 300 of 2021". ClinCalc. Retrieved 18 February 2021.
  6. ^ "Furosemide - Drug Usage Statistics". ClinCalc. Retrieved 18 February 2021.
  7. ^ "THE 2014 PROHIBITED LIST INTERNATIONAL STANDARD" (PDF). 2014. p. 5. Archived (PDF) from the original on 15 January 2016. Retrieved 24 October 2015.
  8. ^ Sullivan, S; Hinchcliff, K (April 2015). "Update on exercise-induced pulmonary hemorrhage". The Veterinary Clinics of North America. Equine Practice. 31 (1): 187–98. doi:10.1016/j.cveq.2014.11.011. PMID 25770069.
  9. ^ Hinchcliff, KW; Couetil, LL; Knight, PK; Morley, PS; Robinson, NE; Sweeney, CR; van Erck, E (2015). "Exercise induced pulmonary hemorrhage in horses: American College of Veterinary Internal Medicine consensus statement". Journal of Veterinary Internal Medicine. 29 (3): 743–58. doi:10.1111/jvim.12593. PMC 4895427. PMID 25996660.
  10. ^ "Furosemide". The American Society of Health-System Pharmacists. Archived from the original on 17 March 2011. Retrieved 3 April 2011.
  11. ^ Täger T, Fröhlich H, Seiz M, Katus HA, Frankenstein L (March 2019). "READY: relative efficacy of loop diuretics in patients with chronic systolic heart failure-a systematic review and network meta-analysis of randomised trials". Heart Fail Rev. 24 (4): 461–472. doi:10.1007/s10741-019-09771-8. PMID 30874955. S2CID 77394851.
  12. ^ Miles JA, Hanumanthu BK, Patel K, Chen M, Siegel RM, Kokkinidis DG (June 2019). "Torsemide versus furosemide and intermediate-term outcomes in patients with heart failure: an updated meta-analysis". J Cardiovasc Med (Hagerstown). 20 (6): 379–388. doi:10.2459/JCM.0000000000000794. PMID 30950982. S2CID 96436158.
  13. ^ Roush GC, Kaur R, Ernst ME (2014). "Diuretics: a review and update". J. Cardiovasc. Pharmacol. Ther. 19 (1): 5–13. doi:10.1177/1074248413497257. PMID 24243991.
  14. ^ Buggey J, Mentz RJ, Pitt B, Eisenstein EL, Anstrom KJ, Velazquez EJ, O'Connor CM (2015). "A reappraisal of loop diuretic choice in heart failure patients". Am. Heart J. 169 (3): 323–33. doi:10.1016/j.ahj.2014.12.009. PMC 4346710. PMID 25728721.
  15. ^ Rossi S, ed. (2004). Australian Medicines Handbook 2004 (5th ed.). Adelaide, S.A.: Australian Medicines Handbook Pty Ltd. ISBN 978-0-9578521-4-3.
  16. ^ BMC Nephrol. 2012 Aug 29;13:92. doi: 10.1186/1471-2369-13-92.The added-up albumin enhances the diuretic effect of furosemide in patients with hypoalbuminemic chronic kidney disease: a randomized controlled study. Phakdeekitcharoen B1, Boonyawat K Ann Pharmacother. 2003 May;37(5):695-700. Combined furosemide and human albumin treatment for diuretic-resistant edema. Elwell RJ1, Spencer AP, Eisele G
  17. ^ "British National Formulary". Retrieved 9 November 2018.
  18. ^ a b c Ponto, LL; Schoenwald, RD (May 1990). "Furosemide (frusemide). A pharmacokinetic/pharmacodynamic review (Part I)". Clinical Pharmacokinetics. 18 (5): 381–408. doi:10.2165/00003088-199018050-00004. PMID 2185908. S2CID 32352501.
  19. ^ Oh, SW; Han, SY (June 2015). "Loop Diuretics in Clinical Practice". Electrolyte & Blood Pressure. 13 (1): 17–21. doi:10.5049/EBP.2015.13.1.17. PMC 4520883. PMID 26240596.
  20. ^ Katta, N; Balla, S; Alpert, MA (July 2016). "Does Long-Term Furosemide Therapy Cause Thiamine Deficiency in Patients with Heart Failure? A Focused Review". The American Journal of Medicine. 129 (7): 753.e7–753.e11. doi:10.1016/j.amjmed.2016.01.037. PMID 26899752.
  21. ^ Rais-Bahrami K, Majd M, Veszelovszky E, Short B (2004). "Use of furosemide and hearing loss in neonatal intensive care survivors". Am J Perinatol. 21 (6): 329–32. doi:10.1055/s-2004-831887. PMID 15311369.
  22. ^ BNF 45 March 2003
  23. ^ "UpToDate". www.uptodate.com. Retrieved 2018-11-06.
  24. ^ Brand name:Lasix - Generic name: Furosemide Prescription Drug Information, Side Effects - PDRHealth
  25. ^ Dowd, Frank J; Johnson, Bart; Mariotti, Angelo (3 September 2016). Pharmacology and Therapeutics for Dentistry - E-Book. Elsevier Health Sciences. pp. 324–326. ISBN 9780323445955. Retrieved 4 November 2017.
  26. ^ a b Korpi ER, Kuner T, Seeburg PH, Lüddens H (1995). "Selective antagonist for the cerebellar granule cell-specific gamma-aminobutyric acid type A receptor". Mol. Pharmacology. 47 (2): 283–9. PMID 7870036.
  27. ^ a b Tia S, Wang JF, Kotchabhakdi N, Vicini S (1996). "Developmental changes of inhibitory synaptic currents in cerebellar granule neurons: role of GABA(A) receptor alpha 6 subunit". J. Neurosci. 16 (11): 3630–40. doi:10.1523/JNEUROSCI.16-11-03630.1996. PMC 6578841. PMID 8642407.
  28. ^ a b Wafford KA, Thompson SA, Thomas D, Sikela J, Wilcox AS, Whiting PJ (1996). "Functional characterization of human gamma-aminobutyric acidA receptors containing the alpha 4 subunit". Mol. Pharmacol. 50 (3): 670–8. PMID 8794909.
  29. ^ AMA Department of Drugs: Drug Evaluations Subscription, American Medical Association, Chicago, IL, 1990.
  30. ^ Knoben JE & Anderson PO (Eds): Handbook of Clinical Drug Data, 6th. Drug Intelligence Publications, Inc, Hamilton, IL, 1988.
  31. ^ a b c d Product Information: Lasix(R), furosemide. Aventis Pharmaceuticals, Bridgewater, NJ, 2004.
  32. ^ a b c d e Gilman AG, Rall TW, Nies AS, et al (Eds): Goodman and Gilman's The Pharmacological Basis of Therapeutics, 8th. Pergamon Press, New York, NY, 1990.
  33. ^ a b c d e Kelly, M. R.; Cutler, R. E.; Forrey, A. W.; Kimpel, B. M. (February 1974). "Pharmacokinetics of orally administered furosemide". Clinical Pharmacology and Therapeutics. 15 (2): 178–186. doi:10.1002/cpt1974152178. ISSN 0009-9236. PMID 4812154. S2CID 74223978.
  34. ^ Verbeeck, R. K.; Patwardhan, R. V.; Villeneuve, J. P.; Wilkinson, G. R.; Branch, R. A. (June 1982). "Furosemide disposition in cirrhosis". Clinical Pharmacology and Therapeutics. 31 (6): 719–725. doi:10.1038/clpt.1982.101. ISSN 0009-9236. PMID 7075120. S2CID 27659838.
  35. ^ Chaturvedi, P. R.; O'Donnell, J. P.; Nicholas, J. M.; Shoenthal, D. R.; Waters, D. H.; Gwilt, P. R. (March 1987). "Steady state absorption kinetics and pharmacodynamics of furosemide in congestive heart failure". International Journal of Clinical Pharmacology, Therapy, and Toxicology. 25 (3): 123–128. ISSN 0174-4879. PMID 3557737.
  36. ^ Brater, D.C. (1991). "Clinical Pharmacology of Loop Diuretics". Drugs. 41 (Supplement 3): 14–22. doi:10.2165/00003495-199100413-00004. ISSN 0012-6667. PMID 1712712. S2CID 41247401.
  37. ^ Haegeli, Laurent; Brunner-La Rocca, Hans Peter; Wenk, Markus; Pfisterer, Matthias; Drewe, Jürgen; Krähenbühl, Stephan (December 2007). "Sublingual administration of furosemide: new application of an old drug". British Journal of Clinical Pharmacology. 64 (6): 804–809. doi:10.1111/j.1365-2125.2007.03035.x. ISSN 1365-2125. PMC 2198789. PMID 17875188.
  38. ^ AHFS Drug Information 2004. McEvoy GK, ed. Furosemide. American Society of Health-System Pharmacists; 2004: 2260-4.
  39. ^ "Naming human medicines". Archived from the original on 2010-04-27. Retrieved 2009-11-18.
  40. ^ Kittleson, Mark; Kienle, Richard (1998). Small Animal Cardiovascular Medicine. ISBN 978-0-8151-5140-1.
  41. ^ https://www.espn.com/horse-racing/story/_/id/26552958/us-racetracks-ban-race-day-lasix-2021

Further reading[edit]

  • Aventis Pharma (1998). Lasix Approved Product Information. Lane Cove: Aventis Pharma Pty Ltd.
  • Barbara Forney (2007). Understanding Equine Medications, Revised Edition (Horse Health Care Library). Eclipse Press. ISBN 978-1-58150-151-3.

External links[edit]