Fuzzy cognitive map

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search
Rod Tabers FCM depicting eleven factors of the American drug market

A fuzzy cognitive map is a cognitive map within which the relations between the elements (e.g. concepts, events, project resources) of a "mental landscape" can be used to compute the "strength of impact" of these elements. Fuzzy cognitive maps were introduced by Bart Kosko.[1][2] Ron Axelrod introduced cognitive maps as a formal way of representing social scientific knowledge and modeling decision making in social and political systems, then brought in the computation fuzzy logic.[citation needed]


Fuzzy cognitive maps are signed fuzzy digraphs. They may look at first blush like Hasse diagrams but they are not. Spreadsheets or tables are used to map FCMs into matrices for further computation.[3][4][5] FCM is a technique used for causal knowledge acquisition and representation, it supports causal knowledge reasoning process and belong to the neuro-fuzzy system that aim at solving decision making problems, modeling and simulate complex systems [6]. Learning algorithms have been proposed for training and updating FCMs weights mostly based on ideas coming from the field of Artificial Neural Networks [7]. Adaptation and learning methodologies used to adapt the FCM model and adjust its weights. Kosko and Dickerson (Dickerson & Kosko, 1994) suggested the Differential Hebbian Learning (DHL) to train FCM.[8] There have been proposed algorithms based on the initial Hebbian algorithm;[9] others algorithms come from the field of genetic algorithms, swarm intelligence[10] and evolutionary computation.[11] Learning algorithms are used to overcome the shortcomings that the traditional FCM present i.e. decreasing the human intervention by suggested automated FCM candidates; or by activating only the most relevant concepts every execution time; or by making models more transparent and dynamic.[12]

Fuzzy cognitive maps (FCMs) have gained considerable research interest due to their ability in representing structured knowledge and model complex systems in various fields. This growing interest led to the need for enhancement and making more reliable models that can better represent real situations. A first simple application of FCMs is described in a book[13] of William R. Taylor, where the war in Afghanistan and Iraq is analyzed. In Bart Kosko's book Fuzzy Thinking,[14] several Hasse diagrams illustrate the use of FCMs. As an example, one FCM quoted from Rod Taber[15] describes 11 factors of the American cocaine market and the relations between these factors. For computations, Taylor uses pentavalent logic (scalar values out of {-1,-0.5,0,+0.5,+1}). That particular map of Taber uses trivalent logic (scalar values out of {-1,0,+1}). Taber et al. also illustrate the dynamics of map fusion and give a theorem on the convergence of combination in a related article.[16]

While applications in social sciences[13][14][15][17] introduced FCMs to the public, they are used in a much wider range of applications, which all have to deal with creating and using models[18] of uncertainty and complex processes and systems. Examples:

FCMappers is an international online community for the analysis and the visualization of fuzzy cognitive maps.[37] FCMappers offer support for starting with FCM and also provide a Microsoft Excel-based tool that is able to check and analyse FCMs. The output is saved as Pajek file and can be visualized within third party software like Pajek, Visone, etc. They also offer to adapt the software to specific research needs.

Additional FCM software tools, such as Mental Modeler,[38][39] have recently been developed as a decision-support tool for use in social science research, collaborative decision-making, and natural resource planning.

Bipolar fuzzy cognitive maps[edit]

Fuzzy cognitive maps have been further extended to bipolar fuzzy cognitive maps based on bipolar fuzzy sets[40] and bipolar cognitive mapping.[41][42][43][44] Bipolar fuzzy set theory as an equilibrium-based extension to fuzzy sets is recognized by L. A. Zadeh.[45]

See also[edit]


  1. ^ Bart Kosko (1986). "Fuzzy Cognitive Maps" (PDF). International Journal of Man-Machine Studies. 24: 65–75. 
  2. ^ [1]
  3. ^ "FCMapper - our Fuzzy Cognitive Mapping Software Solution". Fcmappers.net. 2016-01-27. Retrieved 2017-01-09. 
  4. ^ "Fuzzy Cognitive Maps". Ochoadeaspuru.com. Retrieved 2017-01-09. 
  5. ^ "JFCM - Java Fuzzy Cognitive Maps". Jfcm.megadix.it. Retrieved 2017-01-09. 
  6. ^ Salmeron, Jose L. (2012). "Fuzzy Cognitive Maps for Artificial Emotions Forecasting". Applied Soft Computing. 12 (2): 3704-3710. doi:10.1016/j.asoc.2012.01.015. 
  7. ^ Salmeron, Jose L.; Froelich, W. (2016). "Dynamic Optimization of Fuzzy Cognitive Maps for Time Series Forecasting". Knowledge-Based Systems. 105: 29-37. doi:10.1016/j.knosys.2016.04.023. 
  8. ^ "IEEEBook8.dvi" (PDF). Home.eng.iastate.edu. Retrieved 2017-01-09. 
  9. ^ Papageorgiou, E.I.; Stylios, C.D.; Groumpos, P.P. (2004). "Active Hebbian learning algorithm to train fuzzy cognitive maps". International Journal of Approximate Reasoning. 37 (3): 219. doi:10.1016/j.ijar.2004.01.001. 
  10. ^ Papageorgiou, Elpiniki I.; Parsopoulos, Konstantinos E.; Stylios, Chrysostomos S.; Groumpos, Petros P.; Vrahatis, Michael N. (2005). "Fuzzy Cognitive Maps Learning Using Particle Swarm Optimization". Journal of Intelligent Information Systems. 25: 95. doi:10.1007/s10844-005-0864-9. 
  11. ^ Stach, W.; Kurgan, L.; Pedrycz, W.; Reformat, M. (2005). "Evolutionary Development of Fuzzy Cognitive Maps". The 14th IEEE International Conference on Fuzzy Systems, 2005. FUZZ '05. pp. 619–. doi:10.1109/FUZZY.2005.1452465. ISBN 0-7803-9159-4. 
  12. ^ Papageorgiou, Elpiniki I.; Stylios, Chrysostomos; Groumpos, Peter P. (2006). "Unsupervised learning techniques for fine-tuning fuzzy cognitive map causal links". International Journal of Human-Computer Studies. 64 (8): 727. doi:10.1016/j.ijhcs.2006.02.009. 
  13. ^ a b William R. Taylor: Lethal American Confusion (How Bush and the Pacifists Each Failed in the War on Terrorism), 2006, ISBN 0-595-40655-6 (FCM application in chapter 14) Archived September 30, 2007, at the Wayback Machine.
  14. ^ a b c Bart Kosko: Fuzzy Thinking, 1993/1995, ISBN 0-7868-8021-X (Chapter 12: Adaptive Fuzzy Systems)
  15. ^ a b c Rod Taber: Knowledge Processing with Fuzzy Cognitive Maps, Expert Systems with Applications, vol. 2, no. 1, 83-87, 1991 (Hasse diagram in German Wikipedia)
  16. ^ Taber, Rod; Yager, Ronald R.; Helgason, Cathy M. (2007). "Quantization effects on the equilibrium behavior of combined fuzzy cognitive maps". International Journal of Intelligent Systems. 22 (2): 181. doi:10.1002/int.20185. 
  17. ^ Costas Neocleous, Christos Schizas, Costas Yenethlis: Fuzzy Cognitive Models in Studying Political Dynamics - The case of the Cyprus problem Archived September 29, 2007, at the Wayback Machine.
  18. ^ Chrysostomos D. Stylios, Voula C. Georgopoulos, Peter P. Groumpos: The Use of Fuzzy Cognitive Maps in Modeling Systems Archived July 20, 2011, at the Wayback Machine.
  19. ^ Antonie Jetter: Produktplanung im Fuzzy Front End, 2005, ISBN 3-8350-0144-2
  20. ^ Salmeron, Jose L. (2009). "Supporting decision makers with Fuzzy Cognitive Maps". Research-Technology Management. 52 (3): 53-59. doi:10.1080/08956308.2009.11657569. 
  21. ^ Vesa A. Niskanen: Application of Fuzzy Linguistic Cognitive Maps to Prisoner's Dilemma, 2005, ICIC International pp. 139-152, ISSN 1349-4198 Archived September 29, 2007, at the Wayback Machine.
  22. ^ Salmeron, Jose L. (2009). "Augmented Fuzzy Cognitive Maps for modelling LMS Critical Success Factors". Knowledge-Based Systems. 22 (4): 53-59. doi:10.1016/j.knosys.2009.01.002. 
  23. ^ Georgopoulos, Voula C; Malandraki, Georgia A; Stylios, Chrysostomos D (2003). "A fuzzy cognitive map approach to differential diagnosis of specific language impairment". Artificial Intelligence in Medicine. 29 (3): 261–78. doi:10.1016/S0933-3657(02)00076-3. PMID 14656490. 
  24. ^ Papageorgiou, E.I.; Stylios, C.D.; Groumpos, P.P. (2003). "An integrated two-level hierarchical system for decision making in radiation therapy based on fuzzy cognitive maps". IEEE Transactions on Biomedical Engineering. 50 (12): 1326–39. doi:10.1109/TBME.2003.819845. PMID 14656062. 
  25. ^ Salmeron, Jose L.; Papageorgiou, E. (2012). "A Fuzzy Grey Cognitive Maps-based Decision Support System for Radiotherapy Treatment Planning". Knowledge-Based Systems. 30 (1): 151-160. doi:10.1016/j.knosys.2012.01.008. 
  26. ^ Georgopoulos, Voula C.; Stylios, Chrysostomos D. (2015). "Supervisory Fuzzy Cognitive Map Structure for Triage Assessment and Decision Support in the Emergency Department". Simulation and Modeling Methodologies, Technologies and Applications. Advances in Intelligent Systems and Computing. 319. pp. 255–69. doi:10.1007/978-3-319-11457-6_18. ISBN 978-3-319-11456-9. 
  27. ^ "Fuzzy Cognitive Maps in modeling supervisory control systems - IOS Press". Content.iospress.com. Retrieved 2017-01-09. 
  28. ^ Stylios, C.D.; Groumpos, P.P. (2004). "Modeling Complex Systems Using Fuzzy Cognitive Maps". IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans. 34: 155. doi:10.1109/TSMCA.2003.818878. 
  29. ^ Salmeron, Jose L.; Gutierrez, E. (2012). "Fuzzy Grey Cognitive Maps in Reliability Engineering". Applied Soft Computing. 12 (12): 3818-3824. doi:10.1016/j.asoc.2012.02.003. 
  30. ^ Marc Böhlen: More Robots in Cages,
  31. ^ Benjoe A. Juliano, Wylis Bandler: Tracing Chains-of-Thought (Fuzzy Methods in Cognitive Diagnosis), Physica-Verlag Heidelberg 1996, ISBN 3-7908-0922-5
  32. ^ W. B. Vasantha Kandasamy, Florentin Smarandache: Fuzzy Cognitive Maps and Neutrosophic Cognitive Maps, 2003, ISBN 1-931233-76-4
  33. ^ Rodriguez-Repiso, Luis; Setchi, Rossitza; Salmeron, Jose L. (2007). "Modelling IT projects success with Fuzzy Cognitive Maps". Expert Systems with Applications. 32 (2): 543. doi:10.1016/j.eswa.2006.01.032. 
  34. ^ Salmeron, Jose L.; Lopez, C. (2010). "A multicriteria approach for risks assessment in ERP maintenance". Journal of Systems and Software. 83 (10): 1941-1953. doi:10.1016/j.jss.2010.05.073. 
  35. ^ Salmeron, Jose L.; Lopez, C. (2012). "Forecasting Risk Impact on ERP Maintenance with Augmented Fuzzy Cognitive Maps". IEEE Transactions on Software Engineering. 38 (2): 439-452. doi:10.1109/TSE.2011.8. 
  36. ^ Salmeron, Jose L.; Vidal, R.; Mena, A. (2012). "Ranking Fuzzy Cognitive Maps based scenarios with TOPSIS". Expert Systems with Applications. 39 (3): 2443-2450. doi:10.1016/j.eswa.2011.08.094. 
  37. ^ FCMappers - international community for fuzzy cognitive mapping: http://www.FCMappers.net/
  38. ^ Gray, Steven A.; Gray, Stefan; Cox, Linda J.; Henly-Shepard, Sarah (2013). "Mental Modeler: A Fuzzy-Logic Cognitive Mapping Modeling Tool for Adaptive Environmental Management". 2013 46th Hawaii International Conference on System Sciences. pp. 965–. doi:10.1109/HICSS.2013.399. ISBN 978-1-4673-5933-7. 
  39. ^ "Fuzzy Logic Cognitive Mapping". Mental Modeler. Retrieved 2017-01-09. 
  40. ^ Wen-Ran Zhang, 1998, (Yin)(Yang) Bipolar Fuzzy Sets. Proceedings of IEEE World Congress on Computational Intelligence – Fuzz-IEEE, Anchorage, AK, 835-840
  41. ^ Zhang, W.R.; Chen, S.S.; Bezdek, J.C. (1989). "Pool2: A generic system for cognitive map development and decision analysis". IEEE Transactions on Systems, Man, and Cybernetics. 19: 31. doi:10.1109/21.24529. 
  42. ^ Zhang, W.-R.; Chen, S.-S.; Wang, W.; King, R.S. (1992). "A cognitive-map-based approach to the coordination of distributed cooperative agents". IEEE Transactions on Systems, Man, and Cybernetics. 22: 103. doi:10.1109/21.141315. 
  43. ^ Wen-Ran Zhang (2003). "Equilibrium relations and bipolar cognitive mapping for online analytical processing with applications in international relations and strategic decision support". IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics). 33 (2): 295. doi:10.1109/TSMCB.2003.810444. 
  44. ^ Wen-Ran Zhang, 2003b, Equilibrium Energy and Stability Measures for Bipolar Decision and Global Regulation. Int’l J. of Fuzzy Sys. Vol. 5, No. 2, 2003, 114-122
  45. ^ L. A. Zadeh, 2008, Fuzzy logic. Scholarpedia, 3(3):1766, Created: 10 July 2006, reviewed: 27 March 2007, accepted: 31 March 2008.